Properties

Label 2.0.3.1-81225.1-d1
Base field Q(3)\Q(\sqrt{-3})
Conductor norm 81225 81225
CM no
Base change no
Q-curve no
Torsion order 2 2
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(3)\Q(\sqrt{-3})

Generator aa, with minimal polynomial x2x+1 x^{2} - x + 1 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

y2+axy+y=x3+ax2+(30a+77)x184a9{y}^2+a{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-30a+77\right){x}-184a-9
sage: E = EllipticCurve([K([0,1]),K([0,1]),K([1,0]),K([77,-30]),K([-9,-184])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,1]),Polrev([1,0]),Polrev([77,-30]),Polrev([-9,-184])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,1],K![1,0],K![77,-30],K![-9,-184]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(a+2:9a+15:1)\left(a + 2 : -9 a + 15 : 1\right)0.264147118430103660225541640866168379060.26414711843010366022554164086616837906\infty
(194a74:32a+158:1)\left(\frac{19}{4} a - \frac{7}{4} : -\frac{3}{2} a + \frac{15}{8} : 1\right)0022

Invariants

Conductor: N\frak{N} = (315a75)(315a-75) = (2a+1)2(5a+3)2(5)(-2a+1)^{2}\cdot(-5a+3)^{2}\cdot(5)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 81225 81225 = 32192253^{2}\cdot19^{2}\cdot25
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 147825a+34425147825a+34425
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (147825a+34425)(147825a+34425) = (2a+1)8(5a+3)3(5)2(-2a+1)^{8}\cdot(-5a+3)^{3}\cdot(5)^{2}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 28126186875 28126186875 = 381932523^{8}\cdot19^{3}\cdot25^{2}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 1579455175a617465 \frac{15794551}{75} a - \frac{61746}{5}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.26414711843010366022554164086616837906 0.26414711843010366022554164086616837906
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 0.528294236860207320451083281732336758120 0.528294236860207320451083281732336758120
Global period: Ω(E/K)\Omega(E/K) 2.6960186431141276564443822161800005310 2.6960186431141276564443822161800005310
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 16 16  =  22222^{2}\cdot2\cdot2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 3.2892594268040393663570959445686674939 3.2892594268040393663570959445686674939
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

3.289259427L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/212.6960190.52829416221.7320513.289259427\displaystyle 3.289259427 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 2.696019 \cdot 0.528294 \cdot 16 } { {2^2 \cdot 1.732051} } \approx 3.289259427

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(2a+1)(-2a+1) 33 44 I2I_{2}^{*} Additive 1-1 22 88 22
(5a+3)(-5a+3) 1919 22 IIIIII Additive 11 22 33 00
(5)(5) 2525 22 I2I_{2} Split multiplicative 1-1 11 22 22

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 81225.1-d consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.