Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
144.3-a1 144.3-a \(\Q(\sqrt{-39}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $-3$ $N(\mathrm{U}(1))$ $1$ $5.108115717$ 1.635906278 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -27\bigr] \) ${y}^2={x}^3-27$
144.3-a2 144.3-a \(\Q(\sqrt{-39}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/6\Z$ $-3$ $N(\mathrm{U}(1))$ $1$ $5.108115717$ 1.635906278 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 1\bigr] \) ${y}^2={x}^3+1$
144.3-a3 144.3-a \(\Q(\sqrt{-39}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/6\Z$ $-12$ $N(\mathrm{U}(1))$ $1$ $2.554057858$ 1.635906278 \( 54000 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -15\) , \( 22\bigr] \) ${y}^2={x}^3-15{x}+22$
144.3-a4 144.3-a \(\Q(\sqrt{-39}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $-12$ $N(\mathrm{U}(1))$ $1$ $2.554057858$ 1.635906278 \( 54000 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -135\) , \( -594\bigr] \) ${y}^2={x}^3-135{x}-594$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.