Properties

Label 2.0.39.1-144.3-a4
Base field \(\Q(\sqrt{-39}) \)
Conductor norm \( 144 \)
CM yes (\(-12\))
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-39}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 10 \); class number \(4\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([10, -1, 1]))
 
gp: K = nfinit(Polrev([10, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^3-135{x}-594\)
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([0,0]),K([-135,0]),K([-594,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([0,0]),Polrev([-135,0]),Polrev([-594,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,0],K![0,0],K![-135,0],K![-594,0]]);
 

This is not a global minimal model: it is minimal at all primes except \((3,a+1)\). No global minimal model exists.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-6 : 0 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((12)\) = \((2,a)^{2}\cdot(2,a+1)^{2}\cdot(3,a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 144 \) = \(2^{2}\cdot2^{2}\cdot3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $5038848$
Discriminant ideal: $(\Delta)$ = \((5038848)\) = \((2,a)^{8}\cdot(2,a+1)^{8}\cdot(3,a+1)^{18}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\Delta)$ = \( 25389989167104 \) = \(2^{8}\cdot2^{8}\cdot3^{18}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
Minimal discriminant: $\frak{D}_{\mathrm{min}}$ = \((6912)\) = \((2,a)^{8}\cdot(2,a+1)^{8}\cdot(3,a+1)^{6}\)
Minimal discriminant norm: $N(\frak{D}_{\mathrm{min}})$ = \( 47775744 \) = \(2^{8}\cdot2^{8}\cdot3^{6}\)
j-invariant: $j$ = \( 54000 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z[\sqrt{-3}]\)    (potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $N(\mathrm{U}(1))$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 5.1081157178325565351221945057517738028 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 2 \)  =  \(1\cdot1\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.6359062786385493640155244333506133810 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 4 \) (rounded)

BSD formula

$\displaystyle 1.635906279 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 4 \cdot 5.108116 \cdot 1 \cdot 2 } { {2^2 \cdot 6.244998} } \approx 1.635906279$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2,a)\) \(2\) \(1\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((2,a+1)\) \(2\) \(1\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((3,a+1)\) \(3\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

For all other primes \(p\), the image is the normalizer of a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 144.3-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 36.a1
\(\Q\) 6084.i2