Properties

Label 2.0.4.1-18000.3-f2
Base field \(\Q(\sqrt{-1}) \)
Conductor norm \( 18000 \)
CM no
Base change no
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(16i-12\right){x}+22i-4\)
sage: E = EllipticCurve([K([1,1]),K([1,-1]),K([0,0]),K([-12,16]),K([-4,22])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([1,-1]),Polrev([0,0]),Polrev([-12,16]),Polrev([-4,22])], K);
 
magma: E := EllipticCurve([K![1,1],K![1,-1],K![0,0],K![-12,16],K![-4,22]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-4 i - 7 : 19 i - 18 : 1\right)$$0.56105509073466330829093502803492620949$$\infty$
$\left(2 i - 4 : i + 3 : 1\right)$$0$$2$
$\left(\frac{1}{2} i - 1 : \frac{1}{4} i + \frac{3}{4} : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((120i+60)\) = \((i+1)^{4}\cdot(-i-2)\cdot(2i+1)^{2}\cdot(3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 18000 \) = \(2^{4}\cdot5\cdot5^{2}\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-158400i-421200$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-158400i-421200)\) = \((i+1)^{8}\cdot(-i-2)^{2}\cdot(2i+1)^{8}\cdot(3)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 202500000000 \) = \(2^{8}\cdot5^{2}\cdot5^{8}\cdot9^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{470596}{225} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.56105509073466330829093502803492620949 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 1.12211018146932661658187005606985241898 \)
Global period: $\Omega(E/K)$ \( 3.1140259784385669952365615480237270560 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 32 \)  =  \(2\cdot2\cdot2^{2}\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 3.4942802557658977848141442989112341274 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 3.494280256 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 3.114026 \cdot 1.122110 \cdot 32 } { {4^2 \cdot 2.000000} } \approx 3.494280256$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((i+1)\) \(2\) \(2\) \(I_0^{*}\) Additive \(-1\) \(4\) \(8\) \(0\)
\((-i-2)\) \(5\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((2i+1)\) \(5\) \(4\) \(I_{2}^{*}\) Additive \(1\) \(2\) \(8\) \(2\)
\((3)\) \(9\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 18000.3-f consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.