Properties

Label 2.0.4.1-26000.6-f2
Base field Q(1)\Q(\sqrt{-1})
Conductor norm 26000 26000
CM no
Base change no
Q-curve no
Torsion order 2 2
Rank 0 0

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(1)\Q(\sqrt{-1})

Generator ii, with minimal polynomial x2+1 x^{2} + 1 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

y2+(i+1)xy=x3+(i+1)x2+(26i+18)x408i244{y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(26i+18\right){x}-408i-244
sage: E = EllipticCurve([K([1,1]),K([1,-1]),K([0,0]),K([18,26]),K([-244,-408])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([1,-1]),Polrev([0,0]),Polrev([18,26]),Polrev([-244,-408])], K);
 
magma: E := EllipticCurve([K![1,1],K![1,-1],K![0,0],K![18,26],K![-244,-408]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2i+6:4i2:1)\left(2 i + 6 : -4 i - 2 : 1\right)0022

Invariants

Conductor: N\frak{N} = (20i+160)(20i+160) = (i+1)4(i2)(2i+1)2(2i+3)(i+1)^{4}\cdot(-i-2)\cdot(2i+1)^{2}\cdot(2i+3)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 26000 26000 = 24552132^{4}\cdot5\cdot5^{2}\cdot13
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 91340800i+48025600-91340800i+48025600
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (91340800i+48025600)(-91340800i+48025600) = (i+1)24(i2)2(2i+1)9(2i+3)(i+1)^{24}\cdot(-i-2)^{2}\cdot(2i+1)^{9}\cdot(2i+3)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 10649600000000000 10649600000000000 = 2245259132^{24}\cdot5^{2}\cdot5^{9}\cdot13
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 1716976500i+2279159104000 \frac{171697}{6500} i + \frac{2279159}{104000}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 00
Regulator: Reg(E/K)\mathrm{Reg}(E/K) = 1 1
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) = 1 1
Global period: Ω(E/K)\Omega(E/K) 1.29372153152537604992131723270368828786 1.29372153152537604992131723270368828786
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 16 16  =  222212^{2}\cdot2\cdot2\cdot1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 2.5874430630507520998426344654073765757 2.5874430630507520998426344654073765757
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

2.587443063L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/211.293722116222.0000002.587443063\displaystyle 2.587443063 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 1.293722 \cdot 1 \cdot 16 } { {2^2 \cdot 2.000000} } \approx 2.587443063

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(i+1)(i+1) 22 44 I16I_{16}^{*} Additive 11 44 2424 1212
(i2)(-i-2) 55 22 I2I_{2} Split multiplicative 1-1 11 22 22
(2i+1)(2i+1) 55 22 I3I_{3}^{*} Additive 11 22 99 33
(2i+3)(2i+3) 1313 11 I1I_{1} Non-split multiplicative 11 11 11 11

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B
33 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3, 4, 6 and 12.
Its isogeny class 26000.6-f consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.