Properties

Label 2.0.4.1-32400.1-CMb1
Base field Q(1)\Q(\sqrt{-1})
Conductor norm 32400 32400
CM yes (4-4)
Base change no
Q-curve yes
Torsion order 2 2
Rank 0 0

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(1)\Q(\sqrt{-1})

Generator ii, with minimal polynomial x2+1 x^{2} + 1 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

y2=x3+(18i+99)x{y}^2={x}^{3}+\left(-18i+99\right){x}
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([0,0]),K([99,-18]),K([0,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([0,0]),Polrev([99,-18]),Polrev([0,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,0],K![0,0],K![99,-18],K![0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(0:0:1)\left(0 : 0 : 1\right)0022

Invariants

Conductor: N\frak{N} = (144i+108)(144i+108) = (i+1)4(i2)2(3)2(i+1)^{4}\cdot(-i-2)^{2}\cdot(3)^{2}
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 32400 32400 = 2452922^{4}\cdot5^{2}\cdot9^{2}
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 33499008i5594054433499008i-55940544
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (33499008i55940544)(33499008i-55940544) = (i+1)12(i2)9(3)6(i+1)^{12}\cdot(-i-2)^{9}\cdot(3)^{6}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 4251528000000000 4251528000000000 = 21259962^{12}\cdot5^{9}\cdot9^{6}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 1728 1728
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z[1]\Z[\sqrt{-1}]    (complex multiplication)
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z[1]\Z[\sqrt{-1}]   
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = U(1)\mathrm{U}(1)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 00
Regulator: Reg(E/K)\mathrm{Reg}(E/K) = 1 1
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) = 1 1
Global period: Ω(E/K)\Omega(E/K) 1.37077343115282462308804099624222274768 1.37077343115282462308804099624222274768
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 4 4  =  1221\cdot2\cdot2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 0.68538671557641231154402049812111137384 0.68538671557641231154402049812111137384
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

0.685386716L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/211.37077314222.0000000.685386716\displaystyle 0.685386716 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 1.370773 \cdot 1 \cdot 4 } { {2^2 \cdot 2.000000} } \approx 0.685386716

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(i+1)(i+1) 22 11 IIII^{*} Additive 11 44 1212 00
(i2)(-i-2) 55 22 IIIIII^{*} Additive 1-1 22 99 00
(3)(3) 99 22 I0I_0^{*} Additive 11 22 66 00

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
55 5Cs.4.1

For all other primes pp, the image is a Borel subgroup if p=2p=2, a split Cartan subgroup if (1p)=+1\left(\frac{ -1 }{p}\right)=+1 or a nonsplit Cartan subgroup if (1p)=1\left(\frac{ -1 }{p}\right)=-1.

Isogenies and isogeny class

This curve has no rational isogenies other than endomorphisms. Its isogeny class 32400.1-CMb consists of this curve only.

Base change

This elliptic curve is a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.