Properties

Label 2.0.4.1-33800.5-d1
Base field Q(1)\Q(\sqrt{-1})
Conductor norm 33800 33800
CM no
Base change yes
Q-curve yes
Torsion order 4 4
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(1)\Q(\sqrt{-1})

Generator ii, with minimal polynomial x2+1 x^{2} + 1 ; class number 11.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([1, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

y2+(i+1)xy+(i+1)y=x3ix13i{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}-13i
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,1]),K([0,0]),K([1,1]),K([0,-1]),K([0,-13])])
 
Copy content gp:E = ellinit([Polrev([1,1]),Polrev([0,0]),Polrev([1,1]),Polrev([0,-1]),Polrev([0,-13])], K);
 
Copy content magma:E := EllipticCurve([K![1,1],K![0,0],K![1,1],K![0,-1],K![0,-13]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(4i:9i+8:1)\left(4 i : -9 i + 8 : 1\right)0.500172487214149322929738846336392101160.50017248721414932292973884633639210116\infty
(i2:1:1)\left(i - 2 : 1 : 1\right)0022
(52i:34i74:1)\left(-\frac{5}{2} i : \frac{3}{4} i - \frac{7}{4} : 1\right)0022

Invariants

Conductor: N\frak{N} = (130i+130)(130i+130) = (i+1)3(i2)(2i+1)(3i2)(2i+3)(i+1)^{3}\cdot(-i-2)\cdot(2i+1)\cdot(-3i-2)\cdot(2i+3)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 33800 33800 = 235513132^{3}\cdot5\cdot5\cdot13\cdot13
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 6760067600
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (67600)(67600) = (i+1)8(i2)2(2i+1)2(3i2)2(2i+3)2(i+1)^{8}\cdot(-i-2)^{2}\cdot(2i+1)^{2}\cdot(-3i-2)^{2}\cdot(2i+3)^{2}
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 4569760000 4569760000 = 2852521321322^{8}\cdot5^{2}\cdot5^{2}\cdot13^{2}\cdot13^{2}
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: jj = 44225 -\frac{4}{4225}
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.50017248721414932292973884633639210116 0.50017248721414932292973884633639210116
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 1.00034497442829864585947769267278420232 1.00034497442829864585947769267278420232
Global period: Ω(E/K)\Omega(E/K) 4.4009435875223453909058962318634816028 4.4009435875223453909058962318634816028
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 32 32  =  222222\cdot2\cdot2\cdot2\cdot2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 44
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 4.4024618005204255035245508808439538901 4.4024618005204255035245508808439538901
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

4.402461801L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/214.4009441.00034532422.0000004.402461801\begin{aligned}4.402461801 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 4.400944 \cdot 1.000345 \cdot 32 } { {4^2 \cdot 2.000000} } \\ & \approx 4.402461801 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 5 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(i+1)(i+1) 22 22 I1I_{1}^{*} Additive 11 33 88 00
(i2)(-i-2) 55 22 I2I_{2} Split multiplicative 1-1 11 22 22
(2i+1)(2i+1) 55 22 I2I_{2} Split multiplicative 1-1 11 22 22
(3i2)(-3i-2) 1313 22 I2I_{2} Split multiplicative 1-1 11 22 22
(2i+3)(2i+3) 1313 22 I2I_{2} Split multiplicative 1-1 11 22 22

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 33800.5-d consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a Q\Q-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
Q\Q 520.b2
Q\Q 1040.c2