Properties

Label 2.0.4.1-33930.8-d1
Base field Q(1)\Q(\sqrt{-1})
Conductor norm 33930 33930
CM no
Base change no
Q-curve no
Torsion order 7 7
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(1)\Q(\sqrt{-1})

Generator ii, with minimal polynomial x2+1 x^{2} + 1 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

y2+ixy=x3+(174i203)x1572i+507{y}^2+i{x}{y}={x}^{3}+\left(174i-203\right){x}-1572i+507
sage: E = EllipticCurve([K([0,1]),K([0,0]),K([0,0]),K([-203,174]),K([507,-1572])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,0]),Polrev([0,0]),Polrev([-203,174]),Polrev([507,-1572])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,0],K![0,0],K![-203,174],K![507,-1572]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/7Z\Z \oplus \Z/{7}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(3i+192:534i154:1)\left(-3 i + \frac{19}{2} : \frac{53}{4} i - \frac{15}{4} : 1\right)0.440246972835870015057135302198343500460.44024697283587001505713530219834350046\infty
(3i13:47i60:1)\left(-3 i - 13 : 47 i - 60 : 1\right)0077

Invariants

Conductor: N\frak{N} = (51i177)(51i-177) = (i+1)(2i+1)(3)(2i+3)(2i+5)(i+1)\cdot(2i+1)\cdot(3)\cdot(2i+3)\cdot(2i+5)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 33930 33930 = 25913292\cdot5\cdot9\cdot13\cdot29
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 380345544i+299584008-380345544i+299584008
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (380345544i+299584008)(-380345544i+299584008) = (i+1)7(2i+1)7(3)7(2i+3)2(2i+5)(i+1)^{7}\cdot(2i+1)^{7}\cdot(3)^{7}\cdot(2i+3)^{2}\cdot(2i+5)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 234413310690000000 234413310690000000 = 275797132292^{7}\cdot5^{7}\cdot9^{7}\cdot13^{2}\cdot29
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 5498196213326890113398108750000i+1998859413817064313398108750000 -\frac{54981962133268901}{13398108750000} i + \frac{19988594138170643}{13398108750000}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.44024697283587001505713530219834350046 0.44024697283587001505713530219834350046
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 0.880493945671740030114270604396687000920 0.880493945671740030114270604396687000920
Global period: Ω(E/K)\Omega(E/K) 0.931112611681935644952419035286806698160 0.931112611681935644952419035286806698160
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 686 686  =  777217\cdot7\cdot7\cdot2\cdot1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 77
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 5.7388731212718235054989276261861812125 5.7388731212718235054989276261861812125
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

5.738873121L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/210.9311130.880494686722.0000005.738873121\displaystyle 5.738873121 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 0.931113 \cdot 0.880494 \cdot 686 } { {7^2 \cdot 2.000000} } \approx 5.738873121

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There are 5 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(i+1)(i+1) 22 77 I7I_{7} Split multiplicative 1-1 11 77 77
(2i+1)(2i+1) 55 77 I7I_{7} Split multiplicative 1-1 11 77 77
(3)(3) 99 77 I7I_{7} Split multiplicative 1-1 11 77 77
(2i+3)(2i+3) 1313 22 I2I_{2} Non-split multiplicative 11 11 22 22
(2i+5)(2i+5) 2929 11 I1I_{1} Split multiplicative 1-1 11 11 11

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
77 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 7.
Its isogeny class 33930.8-d consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.