Properties

Label 2.0.4.1-52650.4-a8
Base field Q(1)\Q(\sqrt{-1})
Conductor norm 52650 52650
CM no
Base change no
Q-curve no
Torsion order 2 2
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(1)\Q(\sqrt{-1})

Generator ii, with minimal polynomial x2+1 x^{2} + 1 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

y2+ixy+(i+1)y=x3+x2+(5477i94)x114521i+107406{y}^2+i{x}{y}+\left(i+1\right){y}={x}^{3}+{x}^{2}+\left(-5477i-94\right){x}-114521i+107406
sage: E = EllipticCurve([K([0,1]),K([1,0]),K([1,1]),K([-94,-5477]),K([107406,-114521])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([1,1]),Polrev([-94,-5477]),Polrev([107406,-114521])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,0],K![1,1],K![-94,-5477],K![107406,-114521]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(21i24:20i+106:1)\left(-21 i - 24 : -20 i + 106 : 1\right)0.836000358908691942966453430854303666420.83600035890869194296645343085430366642\infty
(30i1234:1198i312:1)\left(-30 i - \frac{123}{4} : \frac{119}{8} i - \frac{31}{2} : 1\right)0022

Invariants

Conductor: N\frak{N} = (45i225)(45i-225) = (i+1)(i2)(2i+1)(3)2(2i+3)(i+1)\cdot(-i-2)\cdot(2i+1)\cdot(3)^{2}\cdot(2i+3)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 52650 52650 = 25592132\cdot5\cdot5\cdot9^{2}\cdot13
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 44286750i+27155250-44286750i+27155250
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (44286750i+27155250)(-44286750i+27155250) = (i+1)3(i2)8(2i+1)3(3)6(2i+3)(i+1)^{3}\cdot(-i-2)^{8}\cdot(2i+1)^{3}\cdot(3)^{6}\cdot(2i+3)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 2698723828125000 2698723828125000 = 23585396132^{3}\cdot5^{8}\cdot5^{3}\cdot9^{6}\cdot13
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 402342226610289320312500i+585697921060090120312500 -\frac{4023422266102893}{20312500} i + \frac{5856979210600901}{20312500}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.83600035890869194296645343085430366642 0.83600035890869194296645343085430366642
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 1.67200071781738388593290686170860733284 1.67200071781738388593290686170860733284
Global period: Ω(E/K)\Omega(E/K) 0.482141548074313006598481621892285673100 0.482141548074313006598481621892285673100
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 32 32  =  12312211\cdot2^{3}\cdot1\cdot2^{2}\cdot1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 3.2245640578793441937991055818722362542 3.2245640578793441937991055818722362542
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

3.224564058L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/210.4821421.67200132222.0000003.224564058\displaystyle 3.224564058 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 0.482142 \cdot 1.672001 \cdot 32 } { {2^2 \cdot 2.000000} } \approx 3.224564058

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 5 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(i+1)(i+1) 22 11 I3I_{3} Non-split multiplicative 11 11 33 33
(i2)(-i-2) 55 88 I8I_{8} Split multiplicative 1-1 11 88 88
(2i+1)(2i+1) 55 11 I3I_{3} Non-split multiplicative 11 11 33 33
(3)(3) 99 44 I0I_0^{*} Additive 11 22 66 00
(2i+3)(2i+3) 1313 11 I1I_{1} Split multiplicative 1-1 11 11 11

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B
33 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3, 4, 6 and 12.
Its isogeny class 52650.4-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.