Properties

Label 2.0.4.1-67600.6-f7
Base field \(\Q(\sqrt{-1}) \)
Conductor norm \( 67600 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(-24i-10\right){x}-46i+9\)
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([0,0]),K([-10,-24]),K([9,-46])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([0,0]),Polrev([-10,-24]),Polrev([9,-46])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,0],K![0,0],K![-10,-24],K![9,-46]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(6 i - 3 : 2 i - 22 : 1\right)$$2.2584918242450024499606972329623245278$$\infty$
$\left(-2 i - 3 : 0 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((100i-240)\) = \((i+1)^{4}\cdot(-i-2)\cdot(2i+1)\cdot(2i+3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 67600 \) = \(2^{4}\cdot5\cdot5\cdot13^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-66240i-162800$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-66240i-162800)\) = \((i+1)^{8}\cdot(-i-2)\cdot(2i+1)\cdot(2i+3)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 30891577600 \) = \(2^{8}\cdot5\cdot5\cdot13^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{55296}{5} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 2.2584918242450024499606972329623245278 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 4.5169836484900048999213944659246490556 \)
Global period: $\Omega(E/K)$ \( 3.3247498125848845694815162750913129108 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 2 \)  =  \(1\cdot1\cdot1\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 3.7544601346915329778737150557821264372 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 3.754460135 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 3.324750 \cdot 4.516984 \cdot 2 } { {2^2 \cdot 2.000000} } \approx 3.754460135$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((i+1)\) \(2\) \(1\) \(I_0^{*}\) Additive \(-1\) \(4\) \(8\) \(0\)
\((-i-2)\) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((2i+1)\) \(5\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((2i+3)\) \(13\) \(2\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8 and 16.
Its isogeny class 67600.6-f consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.