Properties

Label 2.0.4.1-8100.2-b1
Base field Q(1)\Q(\sqrt{-1})
Conductor norm 8100 8100
CM no
Base change no
Q-curve yes
Torsion order 2 2
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(1)\Q(\sqrt{-1})

Generator ii, with minimal polynomial x2+1 x^{2} + 1 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

y2+(i+1)xy+(i+1)y=x3+ix2+(190i+33)x571i+756{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-190i+33\right){x}-571i+756
sage: E = EllipticCurve([K([1,1]),K([0,1]),K([1,1]),K([33,-190]),K([756,-571])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,1]),Polrev([1,1]),Polrev([33,-190]),Polrev([756,-571])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,1],K![1,1],K![33,-190],K![756,-571]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(4i6:13i36:1)\left(4 i - 6 : -13 i - 36 : 1\right)1.20222577808836686843114536548635859161.2022257780883668684311453654863585916\infty
(192i6:294i94:1)\left(-\frac{19}{2} i - 6 : \frac{29}{4} i - \frac{9}{4} : 1\right)0022

Invariants

Conductor: N\frak{N} = (90)(90) = (i+1)2(i2)(2i+1)(3)2(i+1)^{2}\cdot(-i-2)\cdot(2i+1)\cdot(3)^{2}
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 8100 8100 = 2255922^{2}\cdot5\cdot5\cdot9^{2}
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 55112400i+188956800-55112400i+188956800
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (55112400i+188956800)(-55112400i+188956800) = (i+1)8(i2)2(2i+1)6(3)9(i+1)^{8}\cdot(-i-2)^{2}\cdot(2i+1)^{6}\cdot(3)^{9}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 38742048900000000 38742048900000000 = 285256992^{8}\cdot5^{2}\cdot5^{6}\cdot9^{9}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 4266032415625i+4516603215625 -\frac{42660324}{15625} i + \frac{45166032}{15625}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 1.2022257780883668684311453654863585916 1.2022257780883668684311453654863585916
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 2.4044515561767337368622907309727171832 2.4044515561767337368622907309727171832
Global period: Ω(E/K)\Omega(E/K) 1.09058117626770329640249115511972163228 1.09058117626770329640249115511972163228
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 8 8  =  12221\cdot2\cdot2\cdot2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 2.6222496064139319502147628395855432672 2.6222496064139319502147628395855432672
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

2.622249606L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/211.0905812.4044528222.0000002.622249606\displaystyle 2.622249606 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 1.090581 \cdot 2.404452 \cdot 8 } { {2^2 \cdot 2.000000} } \approx 2.622249606

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(i+1)(i+1) 22 11 IVIV^{*} Additive 1-1 22 88 00
(i2)(-i-2) 55 22 I2I_{2} Split multiplicative 1-1 11 22 22
(2i+1)(2i+1) 55 22 I6I_{6} Non-split multiplicative 11 11 66 66
(3)(3) 99 22 IIIIII^{*} Additive 11 22 99 00

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B
33 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 8100.2-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.