Learn more

Refine search


Results (28 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
26244.2-a1 26244.2-a Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 0.3059348830.305934883 3.3055833793.305583379 2.038575609 359374 -\frac{35937}{4} [1 \bigl[1 , 1 -1 , 0 0 , 6 -6 , 8] 8\bigr] y2+xy=x3x26x+8{y}^2+{x}{y}={x}^{3}-{x}^{2}-6{x}+8
26244.2-a2 26244.2-a Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.1019782940.101978294 1.1018611261.101861126 2.038575609 10950364 \frac{109503}{64} [1 \bigl[1 , 1 -1 , 0 0 , 39 39 , 19] -19\bigr] y2+xy=x3x2+39x19{y}^2+{x}{y}={x}^{3}-{x}^{2}+39{x}-19
26244.2-b1 26244.2-b Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 10.1370366010.13703660 0.5834852190.583485219 2.980784579 189613868625128 -\frac{189613868625}{128} [1 \bigl[1 , 1 -1 , 0 0 , 1077 -1077 , 13877] 13877\bigr] y2+xy=x3x21077x+13877{y}^2+{x}{y}={x}^{3}-{x}^{2}-1077{x}+13877
26244.2-b2 26244.2-b Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.4827160280.482716028 1.3614655121.361465512 2.980784579 1406258 -\frac{140625}{8} [1 \bigl[1 , 1 -1 , 0 0 , 42 -42 , 100] -100\bigr] y2+xy=x3x242x100{y}^2+{x}{y}={x}^{3}-{x}^{2}-42{x}-100
26244.2-b3 26244.2-b Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 3.3790122013.379012201 0.1944950730.194495073 2.980784579 11590886252097152 -\frac{1159088625}{2097152} [1 \bigl[1 , 1 -1 , 0 0 , 852 -852 , 19664] 19664\bigr] y2+xy=x3x2852x+19664{y}^2+{x}{y}={x}^{3}-{x}^{2}-852{x}+19664
26244.2-b4 26244.2-b Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 1.4481480861.448148086 4.0843965384.084396538 2.980784579 33752 \frac{3375}{2} [1 \bigl[1 , 1 -1 , 0 0 , 3 3 , 1] -1\bigr] y2+xy=x3x2+3x1{y}^2+{x}{y}={x}^{3}-{x}^{2}+3{x}-1
26244.2-c1 26244.2-c Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 1.2231138321.223113832 2.465565733 354114980116777216a71088400538388608 -\frac{3541149801}{16777216} a - \frac{7108840053}{8388608} [1 \bigl[1 , 1 -1 , a a , 4a27 4 a - 27 , 28a+95] -28 a + 95\bigr] y2+xy+ay=x3x2+(4a27)x28a+95{y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(4a-27\right){x}-28a+95
26244.2-c2 26244.2-c Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.4077046100.407704610 2.465565733 349928132768a+2097573332768 \frac{3499281}{32768} a + \frac{20975733}{32768} [1 \bigl[1 , 1 -1 , a a , 41a+228 -41 a + 228 , 587a1598] 587 a - 1598\bigr] y2+xy+ay=x3x2+(41a+228)x+587a1598{y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-41a+228\right){x}+587a-1598
26244.2-d1 26244.2-d Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.8208126800.820812680 0.4077046100.407704610 5.059419044 354114980116777216a1775882990716777216 \frac{3541149801}{16777216} a - \frac{17758829907}{16777216} [1 \bigl[1 , 1 -1 , a a , 41a204 -41 a - 204 , 709a1598] -709 a - 1598\bigr] y2+xy+ay=x3x2+(41a204)x709a1598{y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-41a-204\right){x}-709a-1598
26244.2-d2 26244.2-d Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 0.2736042260.273604226 1.2231138321.223113832 5.059419044 349928132768a+1223750716384 -\frac{3499281}{32768} a + \frac{12237507}{16384} [1 \bigl[1 , 1 -1 , a a , 4a+21 4 a + 21 , 20a+31] 20 a + 31\bigr] y2+xy+ay=x3x2+(4a+21)x+20a+31{y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(4a+21\right){x}+20a+31
26244.2-e1 26244.2-e Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 0.6076273500.607627350 2.9733355772.973335577 5.462886890 2081716a+2627116 \frac{20817}{16} a + \frac{26271}{16} [1 \bigl[1 , 1 -1 , a a , 5a+3 -5 a + 3 , 2a5] 2 a - 5\bigr] y2+xy+ay=x3x2+(5a+3)x+2a5{y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-5a+3\right){x}+2a-5
26244.2-e2 26244.2-e Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 1.8228820511.822882051 0.9911118590.991111859 5.462886890 113080414096a+124884994096 -\frac{11308041}{4096} a + \frac{12488499}{4096} [1 \bigl[1 , 1 -1 , a a , 40a42 40 a - 42 , 101a+22] 101 a + 22\bigr] y2+xy+ay=x3x2+(40a42)x+101a+22{y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(40a-42\right){x}+101a+22
26244.2-f1 26244.2-f Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 2.9733355772.973335577 2.996840572 113080414096a+5902292048 \frac{11308041}{4096} a + \frac{590229}{2048} [1 \bigl[1 , 1 -1 , a a , 5a -5 a , 5a4] 5 a - 4\bigr] y2+xy+ay=x3x25ax+5a4{y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}-5a{x}+5a-4
26244.2-f2 26244.2-f Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.9911118590.991111859 2.996840572 2081716a+2943 -\frac{20817}{16} a + 2943 [1 \bigl[1 , 1 -1 , a a , 40a15 40 a - 15 , 20a+103] 20 a + 103\bigr] y2+xy+ay=x3x2+(40a15)x+20a+103{y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(40a-15\right){x}+20a+103
26244.2-g1 26244.2-g Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 1.2231138321.223113832 2.465565733 354114980116777216a1775882990716777216 \frac{3541149801}{16777216} a - \frac{17758829907}{16777216} [1 \bigl[1 , 1 -1 , a+1 a + 1 , 5a23 -5 a - 23 , 27a+67] 27 a + 67\bigr] y2+xy+(a+1)y=x3x2+(5a23)x+27a+67{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-5a-23\right){x}+27a+67
26244.2-g2 26244.2-g Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.4077046100.407704610 2.465565733 349928132768a+1223750716384 -\frac{3499281}{32768} a + \frac{12237507}{16384} [1 \bigl[1 , 1 -1 , a+1 a + 1 , 40a+187 40 a + 187 , 588a1011] -588 a - 1011\bigr] y2+xy+(a+1)y=x3x2+(40a+187)x588a1011{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(40a+187\right){x}-588a-1011
26244.2-h1 26244.2-h Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.8208126800.820812680 0.4077046100.407704610 5.059419044 354114980116777216a71088400538388608 -\frac{3541149801}{16777216} a - \frac{7108840053}{8388608} [1 \bigl[1 , 1 -1 , a+1 a + 1 , 40a245 40 a - 245 , 708a2307] 708 a - 2307\bigr] y2+xy+(a+1)y=x3x2+(40a245)x+708a2307{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(40a-245\right){x}+708a-2307
26244.2-h2 26244.2-h Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 0.2736042260.273604226 1.2231138321.223113832 5.059419044 349928132768a+2097573332768 \frac{3499281}{32768} a + \frac{20975733}{32768} [1 \bigl[1 , 1 -1 , a+1 a + 1 , 5a+25 -5 a + 25 , 21a+51] -21 a + 51\bigr] y2+xy+(a+1)y=x3x2+(5a+25)x21a+51{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-5a+25\right){x}-21a+51
26244.2-i1 26244.2-i Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 1.8228820511.822882051 0.9911118590.991111859 5.462886890 113080414096a+5902292048 \frac{11308041}{4096} a + \frac{590229}{2048} [1 \bigl[1 , 1 -1 , a+1 a + 1 , 41a2 -41 a - 2 , 102a+123] -102 a + 123\bigr] y2+xy+(a+1)y=x3x2+(41a2)x102a+123{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-41a-2\right){x}-102a+123
26244.2-i2 26244.2-i Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 0.6076273500.607627350 2.9733355772.973335577 5.462886890 2081716a+2943 -\frac{20817}{16} a + 2943 [1 \bigl[1 , 1 -1 , a+1 a + 1 , 4a2 4 a - 2 , 3a3] -3 a - 3\bigr] y2+xy+(a+1)y=x3x2+(4a2)x3a3{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(4a-2\right){x}-3a-3
26244.2-j1 26244.2-j Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.9911118590.991111859 2.996840572 2081716a+2627116 \frac{20817}{16} a + \frac{26271}{16} [1 \bigl[1 , 1 -1 , a+1 a + 1 , 41a+25 -41 a + 25 , 21a+123] -21 a + 123\bigr] y2+xy+(a+1)y=x3x2+(41a+25)x21a+123{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-41a+25\right){x}-21a+123
26244.2-j2 26244.2-j Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 2.9733355772.973335577 2.996840572 113080414096a+124884994096 -\frac{11308041}{4096} a + \frac{12488499}{4096} [1 \bigl[1 , 1 -1 , a+1 a + 1 , 4a5 4 a - 5 , 6a+1] -6 a + 1\bigr] y2+xy+(a+1)y=x3x2+(4a5)x6a+1{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(4a-5\right){x}-6a+1
26244.2-k1 26244.2-k Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 1.3736935361.373693536 1.1018611261.101861126 9.153510392 359374 -\frac{35937}{4} [1 \bigl[1 , 1 -1 , 1 1 , 56 -56 , 161] -161\bigr] y2+xy+y=x3x256x161{y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-56{x}-161
26244.2-k2 26244.2-k Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 0.4578978450.457897845 3.3055833793.305583379 9.153510392 10950364 \frac{109503}{64} [1 \bigl[1 , 1 -1 , 1 1 , 4 4 , 1] -1\bigr] y2+xy+y=x3x2+4x1{y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+4{x}-1
26244.2-l1 26244.2-l Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.7197025930.719702593 0.1944950730.194495073 10.36976045 189613868625128 -\frac{189613868625}{128} [1 \bigl[1 , 1 -1 , 1 1 , 9695 -9695 , 364985] -364985\bigr] y2+xy+y=x3x29695x364985{y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-9695{x}-364985
26244.2-l2 26244.2-l Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 1.6793060521.679306052 4.0843965384.084396538 10.36976045 1406258 -\frac{140625}{8} [1 \bigl[1 , 1 -1 , 1 1 , 5 -5 , 5] 5\bigr] y2+xy+y=x3x25x+5{y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-5{x}+5
26244.2-l3 26244.2-l Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 0.2399008640.239900864 0.5834852190.583485219 10.36976045 11590886252097152 -\frac{1159088625}{2097152} [1 \bigl[1 , 1 -1 , 1 1 , 95 -95 , 697] -697\bigr] y2+xy+y=x3x295x697{y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-95{x}-697
26244.2-l4 26244.2-l Q(7)\Q(\sqrt{-7}) 2238 2^{2} \cdot 3^{8} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 5.0379181575.037918157 1.3614655121.361465512 10.36976045 33752 \frac{3375}{2} [1 \bigl[1 , 1 -1 , 1 1 , 25 25 , 1] 1\bigr] y2+xy+y=x3x2+25x+1{y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+25{x}+1
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.