26244.2-a1
26244.2-a
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 4 ⋅ 3 12 2^{4} \cdot 3^{12} 2 4 ⋅ 3 1 2
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 3 3
3B.1.1
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
0.305934883 0.305934883 0 . 3 0 5 9 3 4 8 8 3
3.305583379 3.305583379 3 . 3 0 5 5 8 3 3 7 9
2.038575609
− 35937 4 -\frac{35937}{4} − 4 3 5 9 3 7
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 0 0 0 , − 6 -6 − 6 , 8 ] 8\bigr] 8 ]
y 2 + x y = x 3 − x 2 − 6 x + 8 {y}^2+{x}{y}={x}^{3}-{x}^{2}-6{x}+8 y 2 + x y = x 3 − x 2 − 6 x + 8
26244.2-a2
26244.2-a
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 12 ⋅ 3 20 2^{12} \cdot 3^{20} 2 1 2 ⋅ 3 2 0
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 3 3
3B.1.2
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
0.101978294 0.101978294 0 . 1 0 1 9 7 8 2 9 4
1.101861126 1.101861126 1 . 1 0 1 8 6 1 1 2 6
2.038575609
109503 64 \frac{109503}{64} 6 4 1 0 9 5 0 3
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 0 0 0 , 39 39 3 9 , − 19 ] -19\bigr] − 1 9 ]
y 2 + x y = x 3 − x 2 + 39 x − 19 {y}^2+{x}{y}={x}^{3}-{x}^{2}+39{x}-19 y 2 + x y = x 3 − x 2 + 3 9 x − 1 9
26244.2-b1
26244.2-b
4 4 4
21 21 2 1
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 14 ⋅ 3 12 2^{14} \cdot 3^{12} 2 1 4 ⋅ 3 1 2
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3B.1.1 , 7B[2]
1 1 1
3 3 3
10.13703660 10.13703660 1 0 . 1 3 7 0 3 6 6 0
0.583485219 0.583485219 0 . 5 8 3 4 8 5 2 1 9
2.980784579
− 189613868625 128 -\frac{189613868625}{128} − 1 2 8 1 8 9 6 1 3 8 6 8 6 2 5
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 0 0 0 , − 1077 -1077 − 1 0 7 7 , 13877 ] 13877\bigr] 1 3 8 7 7 ]
y 2 + x y = x 3 − x 2 − 1077 x + 13877 {y}^2+{x}{y}={x}^{3}-{x}^{2}-1077{x}+13877 y 2 + x y = x 3 − x 2 − 1 0 7 7 x + 1 3 8 7 7
26244.2-b2
26244.2-b
4 4 4
21 21 2 1
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 6 ⋅ 3 20 2^{6} \cdot 3^{20} 2 6 ⋅ 3 2 0
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3B.1.2 , 7B[2]
1 1 1
3 3 3
0.482716028 0.482716028 0 . 4 8 2 7 1 6 0 2 8
1.361465512 1.361465512 1 . 3 6 1 4 6 5 5 1 2
2.980784579
− 140625 8 -\frac{140625}{8} − 8 1 4 0 6 2 5
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 0 0 0 , − 42 -42 − 4 2 , − 100 ] -100\bigr] − 1 0 0 ]
y 2 + x y = x 3 − x 2 − 42 x − 100 {y}^2+{x}{y}={x}^{3}-{x}^{2}-42{x}-100 y 2 + x y = x 3 − x 2 − 4 2 x − 1 0 0
26244.2-b3
26244.2-b
4 4 4
21 21 2 1
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 42 ⋅ 3 20 2^{42} \cdot 3^{20} 2 4 2 ⋅ 3 2 0
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3B.1.2 , 7B[2]
1 1 1
3 3 3
3.379012201 3.379012201 3 . 3 7 9 0 1 2 2 0 1
0.194495073 0.194495073 0 . 1 9 4 4 9 5 0 7 3
2.980784579
− 1159088625 2097152 -\frac{1159088625}{2097152} − 2 0 9 7 1 5 2 1 1 5 9 0 8 8 6 2 5
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 0 0 0 , − 852 -852 − 8 5 2 , 19664 ] 19664\bigr] 1 9 6 6 4 ]
y 2 + x y = x 3 − x 2 − 852 x + 19664 {y}^2+{x}{y}={x}^{3}-{x}^{2}-852{x}+19664 y 2 + x y = x 3 − x 2 − 8 5 2 x + 1 9 6 6 4
26244.2-b4
26244.2-b
4 4 4
21 21 2 1
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 2 ⋅ 3 12 2^{2} \cdot 3^{12} 2 2 ⋅ 3 1 2
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3B.1.1 , 7B[2]
1 1 1
3 3 3
1.448148086 1.448148086 1 . 4 4 8 1 4 8 0 8 6
4.084396538 4.084396538 4 . 0 8 4 3 9 6 5 3 8
2.980784579
3375 2 \frac{3375}{2} 2 3 3 7 5
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 0 0 0 , 3 3 3 , − 1 ] -1\bigr] − 1 ]
y 2 + x y = x 3 − x 2 + 3 x − 1 {y}^2+{x}{y}={x}^{3}-{x}^{2}+3{x}-1 y 2 + x y = x 3 − x 2 + 3 x − 1
26244.2-c1
26244.2-c
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 29 ⋅ 3 8 2^{29} \cdot 3^{8} 2 2 9 ⋅ 3 8
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.1
1 1 1
2 3 ⋅ 3 2^{3} \cdot 3 2 3 ⋅ 3
1 1 1
1.223113832 1.223113832 1 . 2 2 3 1 1 3 8 3 2
2.465565733
− 3541149801 16777216 a − 7108840053 8388608 -\frac{3541149801}{16777216} a - \frac{7108840053}{8388608} − 1 6 7 7 7 2 1 6 3 5 4 1 1 4 9 8 0 1 a − 8 3 8 8 6 0 8 7 1 0 8 8 4 0 0 5 3
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a a a , 4 a − 27 4 a - 27 4 a − 2 7 , − 28 a + 95 ] -28 a + 95\bigr] − 2 8 a + 9 5 ]
y 2 + x y + a y = x 3 − x 2 + ( 4 a − 27 ) x − 28 a + 95 {y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(4a-27\right){x}-28a+95 y 2 + x y + a y = x 3 − x 2 + ( 4 a − 2 7 ) x − 2 8 a + 9 5
26244.2-c2
26244.2-c
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 23 ⋅ 3 24 2^{23} \cdot 3^{24} 2 2 3 ⋅ 3 2 4
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.2
1 1 1
2 3 2^{3} 2 3
1 1 1
0.407704610 0.407704610 0 . 4 0 7 7 0 4 6 1 0
2.465565733
3499281 32768 a + 20975733 32768 \frac{3499281}{32768} a + \frac{20975733}{32768} 3 2 7 6 8 3 4 9 9 2 8 1 a + 3 2 7 6 8 2 0 9 7 5 7 3 3
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a a a , − 41 a + 228 -41 a + 228 − 4 1 a + 2 2 8 , 587 a − 1598 ] 587 a - 1598\bigr] 5 8 7 a − 1 5 9 8 ]
y 2 + x y + a y = x 3 − x 2 + ( − 41 a + 228 ) x + 587 a − 1598 {y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-41a+228\right){x}+587a-1598 y 2 + x y + a y = x 3 − x 2 + ( − 4 1 a + 2 2 8 ) x + 5 8 7 a − 1 5 9 8
26244.2-d1
26244.2-d
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 29 ⋅ 3 20 2^{29} \cdot 3^{20} 2 2 9 ⋅ 3 2 0
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.2
1 1 1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
0.820812680 0.820812680 0 . 8 2 0 8 1 2 6 8 0
0.407704610 0.407704610 0 . 4 0 7 7 0 4 6 1 0
5.059419044
3541149801 16777216 a − 17758829907 16777216 \frac{3541149801}{16777216} a - \frac{17758829907}{16777216} 1 6 7 7 7 2 1 6 3 5 4 1 1 4 9 8 0 1 a − 1 6 7 7 7 2 1 6 1 7 7 5 8 8 2 9 9 0 7
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a a a , − 41 a − 204 -41 a - 204 − 4 1 a − 2 0 4 , − 709 a − 1598 ] -709 a - 1598\bigr] − 7 0 9 a − 1 5 9 8 ]
y 2 + x y + a y = x 3 − x 2 + ( − 41 a − 204 ) x − 709 a − 1598 {y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-41a-204\right){x}-709a-1598 y 2 + x y + a y = x 3 − x 2 + ( − 4 1 a − 2 0 4 ) x − 7 0 9 a − 1 5 9 8
26244.2-d2
26244.2-d
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 23 ⋅ 3 12 2^{23} \cdot 3^{12} 2 2 3 ⋅ 3 1 2
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.1
1 1 1
2 ⋅ 3 2 ⋅ 5 2 \cdot 3^{2} \cdot 5 2 ⋅ 3 2 ⋅ 5
0.273604226 0.273604226 0 . 2 7 3 6 0 4 2 2 6
1.223113832 1.223113832 1 . 2 2 3 1 1 3 8 3 2
5.059419044
− 3499281 32768 a + 12237507 16384 -\frac{3499281}{32768} a + \frac{12237507}{16384} − 3 2 7 6 8 3 4 9 9 2 8 1 a + 1 6 3 8 4 1 2 2 3 7 5 0 7
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a a a , 4 a + 21 4 a + 21 4 a + 2 1 , 20 a + 31 ] 20 a + 31\bigr] 2 0 a + 3 1 ]
y 2 + x y + a y = x 3 − x 2 + ( 4 a + 21 ) x + 20 a + 31 {y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(4a+21\right){x}+20a+31 y 2 + x y + a y = x 3 − x 2 + ( 4 a + 2 1 ) x + 2 0 a + 3 1
26244.2-e1
26244.2-e
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 7 ⋅ 3 12 2^{7} \cdot 3^{12} 2 7 ⋅ 3 1 2
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.1
1 1 1
2 ⋅ 3 2 2 \cdot 3^{2} 2 ⋅ 3 2
0.607627350 0.607627350 0 . 6 0 7 6 2 7 3 5 0
2.973335577 2.973335577 2 . 9 7 3 3 3 5 5 7 7
5.462886890
20817 16 a + 26271 16 \frac{20817}{16} a + \frac{26271}{16} 1 6 2 0 8 1 7 a + 1 6 2 6 2 7 1
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a a a , − 5 a + 3 -5 a + 3 − 5 a + 3 , 2 a − 5 ] 2 a - 5\bigr] 2 a − 5 ]
y 2 + x y + a y = x 3 − x 2 + ( − 5 a + 3 ) x + 2 a − 5 {y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-5a+3\right){x}+2a-5 y 2 + x y + a y = x 3 − x 2 + ( − 5 a + 3 ) x + 2 a − 5
26244.2-e2
26244.2-e
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 13 ⋅ 3 20 2^{13} \cdot 3^{20} 2 1 3 ⋅ 3 2 0
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.2
1 1 1
2 2 2
1.822882051 1.822882051 1 . 8 2 2 8 8 2 0 5 1
0.991111859 0.991111859 0 . 9 9 1 1 1 1 8 5 9
5.462886890
− 11308041 4096 a + 12488499 4096 -\frac{11308041}{4096} a + \frac{12488499}{4096} − 4 0 9 6 1 1 3 0 8 0 4 1 a + 4 0 9 6 1 2 4 8 8 4 9 9
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a a a , 40 a − 42 40 a - 42 4 0 a − 4 2 , 101 a + 22 ] 101 a + 22\bigr] 1 0 1 a + 2 2 ]
y 2 + x y + a y = x 3 − x 2 + ( 40 a − 42 ) x + 101 a + 22 {y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(40a-42\right){x}+101a+22 y 2 + x y + a y = x 3 − x 2 + ( 4 0 a − 4 2 ) x + 1 0 1 a + 2 2
26244.2-f1
26244.2-f
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 13 ⋅ 3 8 2^{13} \cdot 3^{8} 2 1 3 ⋅ 3 8
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.1
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
2.973335577 2.973335577 2 . 9 7 3 3 3 5 5 7 7
2.996840572
11308041 4096 a + 590229 2048 \frac{11308041}{4096} a + \frac{590229}{2048} 4 0 9 6 1 1 3 0 8 0 4 1 a + 2 0 4 8 5 9 0 2 2 9
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a a a , − 5 a -5 a − 5 a , 5 a − 4 ] 5 a - 4\bigr] 5 a − 4 ]
y 2 + x y + a y = x 3 − x 2 − 5 a x + 5 a − 4 {y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}-5a{x}+5a-4 y 2 + x y + a y = x 3 − x 2 − 5 a x + 5 a − 4
26244.2-f2
26244.2-f
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 7 ⋅ 3 24 2^{7} \cdot 3^{24} 2 7 ⋅ 3 2 4
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.2
1 1 1
2 2 2^{2} 2 2
1 1 1
0.991111859 0.991111859 0 . 9 9 1 1 1 1 8 5 9
2.996840572
− 20817 16 a + 2943 -\frac{20817}{16} a + 2943 − 1 6 2 0 8 1 7 a + 2 9 4 3
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a a a , 40 a − 15 40 a - 15 4 0 a − 1 5 , 20 a + 103 ] 20 a + 103\bigr] 2 0 a + 1 0 3 ]
y 2 + x y + a y = x 3 − x 2 + ( 40 a − 15 ) x + 20 a + 103 {y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(40a-15\right){x}+20a+103 y 2 + x y + a y = x 3 − x 2 + ( 4 0 a − 1 5 ) x + 2 0 a + 1 0 3
26244.2-g1
26244.2-g
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 29 ⋅ 3 8 2^{29} \cdot 3^{8} 2 2 9 ⋅ 3 8
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.1
1 1 1
2 3 ⋅ 3 2^{3} \cdot 3 2 3 ⋅ 3
1 1 1
1.223113832 1.223113832 1 . 2 2 3 1 1 3 8 3 2
2.465565733
3541149801 16777216 a − 17758829907 16777216 \frac{3541149801}{16777216} a - \frac{17758829907}{16777216} 1 6 7 7 7 2 1 6 3 5 4 1 1 4 9 8 0 1 a − 1 6 7 7 7 2 1 6 1 7 7 5 8 8 2 9 9 0 7
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a + 1 a + 1 a + 1 , − 5 a − 23 -5 a - 23 − 5 a − 2 3 , 27 a + 67 ] 27 a + 67\bigr] 2 7 a + 6 7 ]
y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( − 5 a − 23 ) x + 27 a + 67 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-5a-23\right){x}+27a+67 y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( − 5 a − 2 3 ) x + 2 7 a + 6 7
26244.2-g2
26244.2-g
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 23 ⋅ 3 24 2^{23} \cdot 3^{24} 2 2 3 ⋅ 3 2 4
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.2
1 1 1
2 3 2^{3} 2 3
1 1 1
0.407704610 0.407704610 0 . 4 0 7 7 0 4 6 1 0
2.465565733
− 3499281 32768 a + 12237507 16384 -\frac{3499281}{32768} a + \frac{12237507}{16384} − 3 2 7 6 8 3 4 9 9 2 8 1 a + 1 6 3 8 4 1 2 2 3 7 5 0 7
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a + 1 a + 1 a + 1 , 40 a + 187 40 a + 187 4 0 a + 1 8 7 , − 588 a − 1011 ] -588 a - 1011\bigr] − 5 8 8 a − 1 0 1 1 ]
y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( 40 a + 187 ) x − 588 a − 1011 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(40a+187\right){x}-588a-1011 y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( 4 0 a + 1 8 7 ) x − 5 8 8 a − 1 0 1 1
26244.2-h1
26244.2-h
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 29 ⋅ 3 20 2^{29} \cdot 3^{20} 2 2 9 ⋅ 3 2 0
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.2
1 1 1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
0.820812680 0.820812680 0 . 8 2 0 8 1 2 6 8 0
0.407704610 0.407704610 0 . 4 0 7 7 0 4 6 1 0
5.059419044
− 3541149801 16777216 a − 7108840053 8388608 -\frac{3541149801}{16777216} a - \frac{7108840053}{8388608} − 1 6 7 7 7 2 1 6 3 5 4 1 1 4 9 8 0 1 a − 8 3 8 8 6 0 8 7 1 0 8 8 4 0 0 5 3
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a + 1 a + 1 a + 1 , 40 a − 245 40 a - 245 4 0 a − 2 4 5 , 708 a − 2307 ] 708 a - 2307\bigr] 7 0 8 a − 2 3 0 7 ]
y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( 40 a − 245 ) x + 708 a − 2307 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(40a-245\right){x}+708a-2307 y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( 4 0 a − 2 4 5 ) x + 7 0 8 a − 2 3 0 7
26244.2-h2
26244.2-h
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 23 ⋅ 3 12 2^{23} \cdot 3^{12} 2 2 3 ⋅ 3 1 2
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.1
1 1 1
2 ⋅ 3 2 ⋅ 5 2 \cdot 3^{2} \cdot 5 2 ⋅ 3 2 ⋅ 5
0.273604226 0.273604226 0 . 2 7 3 6 0 4 2 2 6
1.223113832 1.223113832 1 . 2 2 3 1 1 3 8 3 2
5.059419044
3499281 32768 a + 20975733 32768 \frac{3499281}{32768} a + \frac{20975733}{32768} 3 2 7 6 8 3 4 9 9 2 8 1 a + 3 2 7 6 8 2 0 9 7 5 7 3 3
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a + 1 a + 1 a + 1 , − 5 a + 25 -5 a + 25 − 5 a + 2 5 , − 21 a + 51 ] -21 a + 51\bigr] − 2 1 a + 5 1 ]
y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( − 5 a + 25 ) x − 21 a + 51 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-5a+25\right){x}-21a+51 y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( − 5 a + 2 5 ) x − 2 1 a + 5 1
26244.2-i1
26244.2-i
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 13 ⋅ 3 20 2^{13} \cdot 3^{20} 2 1 3 ⋅ 3 2 0
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.2
1 1 1
2 2 2
1.822882051 1.822882051 1 . 8 2 2 8 8 2 0 5 1
0.991111859 0.991111859 0 . 9 9 1 1 1 1 8 5 9
5.462886890
11308041 4096 a + 590229 2048 \frac{11308041}{4096} a + \frac{590229}{2048} 4 0 9 6 1 1 3 0 8 0 4 1 a + 2 0 4 8 5 9 0 2 2 9
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a + 1 a + 1 a + 1 , − 41 a − 2 -41 a - 2 − 4 1 a − 2 , − 102 a + 123 ] -102 a + 123\bigr] − 1 0 2 a + 1 2 3 ]
y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( − 41 a − 2 ) x − 102 a + 123 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-41a-2\right){x}-102a+123 y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( − 4 1 a − 2 ) x − 1 0 2 a + 1 2 3
26244.2-i2
26244.2-i
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 7 ⋅ 3 12 2^{7} \cdot 3^{12} 2 7 ⋅ 3 1 2
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.1
1 1 1
2 ⋅ 3 2 2 \cdot 3^{2} 2 ⋅ 3 2
0.607627350 0.607627350 0 . 6 0 7 6 2 7 3 5 0
2.973335577 2.973335577 2 . 9 7 3 3 3 5 5 7 7
5.462886890
− 20817 16 a + 2943 -\frac{20817}{16} a + 2943 − 1 6 2 0 8 1 7 a + 2 9 4 3
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a + 1 a + 1 a + 1 , 4 a − 2 4 a - 2 4 a − 2 , − 3 a − 3 ] -3 a - 3\bigr] − 3 a − 3 ]
y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( 4 a − 2 ) x − 3 a − 3 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(4a-2\right){x}-3a-3 y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( 4 a − 2 ) x − 3 a − 3
26244.2-j1
26244.2-j
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 7 ⋅ 3 24 2^{7} \cdot 3^{24} 2 7 ⋅ 3 2 4
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.2
1 1 1
2 2 2^{2} 2 2
1 1 1
0.991111859 0.991111859 0 . 9 9 1 1 1 1 8 5 9
2.996840572
20817 16 a + 26271 16 \frac{20817}{16} a + \frac{26271}{16} 1 6 2 0 8 1 7 a + 1 6 2 6 2 7 1
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a + 1 a + 1 a + 1 , − 41 a + 25 -41 a + 25 − 4 1 a + 2 5 , − 21 a + 123 ] -21 a + 123\bigr] − 2 1 a + 1 2 3 ]
y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( − 41 a + 25 ) x − 21 a + 123 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-41a+25\right){x}-21a+123 y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( − 4 1 a + 2 5 ) x − 2 1 a + 1 2 3
26244.2-j2
26244.2-j
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 13 ⋅ 3 8 2^{13} \cdot 3^{8} 2 1 3 ⋅ 3 8
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.1
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
2.973335577 2.973335577 2 . 9 7 3 3 3 5 5 7 7
2.996840572
− 11308041 4096 a + 12488499 4096 -\frac{11308041}{4096} a + \frac{12488499}{4096} − 4 0 9 6 1 1 3 0 8 0 4 1 a + 4 0 9 6 1 2 4 8 8 4 9 9
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a + 1 a + 1 a + 1 , 4 a − 5 4 a - 5 4 a − 5 , − 6 a + 1 ] -6 a + 1\bigr] − 6 a + 1 ]
y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( 4 a − 5 ) x − 6 a + 1 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(4a-5\right){x}-6a+1 y 2 + x y + ( a + 1 ) y = x 3 − x 2 + ( 4 a − 5 ) x − 6 a + 1
26244.2-k1
26244.2-k
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 4 ⋅ 3 24 2^{4} \cdot 3^{24} 2 4 ⋅ 3 2 4
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 3 3
3B.1.2
1 1 1
2 2 2^{2} 2 2
1.373693536 1.373693536 1 . 3 7 3 6 9 3 5 3 6
1.101861126 1.101861126 1 . 1 0 1 8 6 1 1 2 6
9.153510392
− 35937 4 -\frac{35937}{4} − 4 3 5 9 3 7
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 1 1 1 , − 56 -56 − 5 6 , − 161 ] -161\bigr] − 1 6 1 ]
y 2 + x y + y = x 3 − x 2 − 56 x − 161 {y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-56{x}-161 y 2 + x y + y = x 3 − x 2 − 5 6 x − 1 6 1
26244.2-k2
26244.2-k
2 2 2
3 3 3
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 12 ⋅ 3 8 2^{12} \cdot 3^{8} 2 1 2 ⋅ 3 8
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 3 3
3B.1.1
1 1 1
2 2 ⋅ 3 2 2^{2} \cdot 3^{2} 2 2 ⋅ 3 2
0.457897845 0.457897845 0 . 4 5 7 8 9 7 8 4 5
3.305583379 3.305583379 3 . 3 0 5 5 8 3 3 7 9
9.153510392
109503 64 \frac{109503}{64} 6 4 1 0 9 5 0 3
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 1 1 1 , 4 4 4 , − 1 ] -1\bigr] − 1 ]
y 2 + x y + y = x 3 − x 2 + 4 x − 1 {y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+4{x}-1 y 2 + x y + y = x 3 − x 2 + 4 x − 1
26244.2-l1
26244.2-l
4 4 4
21 21 2 1
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 14 ⋅ 3 24 2^{14} \cdot 3^{24} 2 1 4 ⋅ 3 2 4
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3B.1.2 , 7B.2.1[2]
1 1 1
7 2 7^{2} 7 2
0.719702593 0.719702593 0 . 7 1 9 7 0 2 5 9 3
0.194495073 0.194495073 0 . 1 9 4 4 9 5 0 7 3
10.36976045
− 189613868625 128 -\frac{189613868625}{128} − 1 2 8 1 8 9 6 1 3 8 6 8 6 2 5
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 1 1 1 , − 9695 -9695 − 9 6 9 5 , − 364985 ] -364985\bigr] − 3 6 4 9 8 5 ]
y 2 + x y + y = x 3 − x 2 − 9695 x − 364985 {y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-9695{x}-364985 y 2 + x y + y = x 3 − x 2 − 9 6 9 5 x − 3 6 4 9 8 5
26244.2-l2
26244.2-l
4 4 4
21 21 2 1
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 6 ⋅ 3 8 2^{6} \cdot 3^{8} 2 6 ⋅ 3 8
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3B.1.1 , 7B.2.1[2]
1 1 1
3 2 3^{2} 3 2
1.679306052 1.679306052 1 . 6 7 9 3 0 6 0 5 2
4.084396538 4.084396538 4 . 0 8 4 3 9 6 5 3 8
10.36976045
− 140625 8 -\frac{140625}{8} − 8 1 4 0 6 2 5
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 1 1 1 , − 5 -5 − 5 , 5 ] 5\bigr] 5 ]
y 2 + x y + y = x 3 − x 2 − 5 x + 5 {y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-5{x}+5 y 2 + x y + y = x 3 − x 2 − 5 x + 5
26244.2-l3
26244.2-l
4 4 4
21 21 2 1
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 42 ⋅ 3 8 2^{42} \cdot 3^{8} 2 4 2 ⋅ 3 8
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3B.1.1 , 7B.2.1[2]
1 1 1
3 2 ⋅ 7 2 3^{2} \cdot 7^{2} 3 2 ⋅ 7 2
0.239900864 0.239900864 0 . 2 3 9 9 0 0 8 6 4
0.583485219 0.583485219 0 . 5 8 3 4 8 5 2 1 9
10.36976045
− 1159088625 2097152 -\frac{1159088625}{2097152} − 2 0 9 7 1 5 2 1 1 5 9 0 8 8 6 2 5
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 1 1 1 , − 95 -95 − 9 5 , − 697 ] -697\bigr] − 6 9 7 ]
y 2 + x y + y = x 3 − x 2 − 95 x − 697 {y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-95{x}-697 y 2 + x y + y = x 3 − x 2 − 9 5 x − 6 9 7
26244.2-l4
26244.2-l
4 4 4
21 21 2 1
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
26244.2
2 2 ⋅ 3 8 2^{2} \cdot 3^{8} 2 2 ⋅ 3 8
2 2 ⋅ 3 24 2^{2} \cdot 3^{24} 2 2 ⋅ 3 2 4
3.00916 3.00916 3 . 0 0 9 1 6
( a ) , ( − a + 1 ) , ( 3 ) (a), (-a+1), (3) ( a ) , ( − a + 1 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 7 3, 7 3 , 7
3B.1.2 , 7B.2.1[2]
1 1 1
1 1 1
5.037918157 5.037918157 5 . 0 3 7 9 1 8 1 5 7
1.361465512 1.361465512 1 . 3 6 1 4 6 5 5 1 2
10.36976045
3375 2 \frac{3375}{2} 2 3 3 7 5
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 1 1 1 , 25 25 2 5 , 1 ] 1\bigr] 1 ]
y 2 + x y + y = x 3 − x 2 + 25 x + 1 {y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+25{x}+1 y 2 + x y + y = x 3 − x 2 + 2 5 x + 1