Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
26244.2-a1 |
26244.2-a |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{4} \cdot 3^{12} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3$ |
3B.1.1 |
$1$ |
\( 2^{2} \cdot 3 \) |
$0.305934883$ |
$3.305583379$ |
2.038575609 |
\( -\frac{35937}{4} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -6\) , \( 8\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-6{x}+8$ |
26244.2-a2 |
26244.2-a |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{12} \cdot 3^{20} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3$ |
3B.1.2 |
$1$ |
\( 2^{2} \cdot 3 \) |
$0.101978294$ |
$1.101861126$ |
2.038575609 |
\( \frac{109503}{64} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( 39\) , \( -19\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}+39{x}-19$ |
26244.2-b1 |
26244.2-b |
$4$ |
$21$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{14} \cdot 3^{12} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3, 7$ |
3B.1.1, 7B[2] |
$1$ |
\( 3 \) |
$10.13703660$ |
$0.583485219$ |
2.980784579 |
\( -\frac{189613868625}{128} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -1077\) , \( 13877\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-1077{x}+13877$ |
26244.2-b2 |
26244.2-b |
$4$ |
$21$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{6} \cdot 3^{20} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3, 7$ |
3B.1.2, 7B[2] |
$1$ |
\( 3 \) |
$0.482716028$ |
$1.361465512$ |
2.980784579 |
\( -\frac{140625}{8} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -42\) , \( -100\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-42{x}-100$ |
26244.2-b3 |
26244.2-b |
$4$ |
$21$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{42} \cdot 3^{20} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3, 7$ |
3B.1.2, 7B[2] |
$1$ |
\( 3 \) |
$3.379012201$ |
$0.194495073$ |
2.980784579 |
\( -\frac{1159088625}{2097152} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -852\) , \( 19664\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-852{x}+19664$ |
26244.2-b4 |
26244.2-b |
$4$ |
$21$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{2} \cdot 3^{12} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3, 7$ |
3B.1.1, 7B[2] |
$1$ |
\( 3 \) |
$1.448148086$ |
$4.084396538$ |
2.980784579 |
\( \frac{3375}{2} \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( 3\) , \( -1\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}+3{x}-1$ |
26244.2-c1 |
26244.2-c |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{29} \cdot 3^{8} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1 |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$1.223113832$ |
2.465565733 |
\( -\frac{3541149801}{16777216} a - \frac{7108840053}{8388608} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 4 a - 27\) , \( -28 a + 95\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(4a-27\right){x}-28a+95$ |
26244.2-c2 |
26244.2-c |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{23} \cdot 3^{24} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.2 |
$1$ |
\( 2^{3} \) |
$1$ |
$0.407704610$ |
2.465565733 |
\( \frac{3499281}{32768} a + \frac{20975733}{32768} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( -41 a + 228\) , \( 587 a - 1598\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-41a+228\right){x}+587a-1598$ |
26244.2-d1 |
26244.2-d |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{29} \cdot 3^{20} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.2 |
$1$ |
\( 2 \cdot 5 \) |
$0.820812680$ |
$0.407704610$ |
5.059419044 |
\( \frac{3541149801}{16777216} a - \frac{17758829907}{16777216} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( -41 a - 204\) , \( -709 a - 1598\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-41a-204\right){x}-709a-1598$ |
26244.2-d2 |
26244.2-d |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{23} \cdot 3^{12} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1 |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \) |
$0.273604226$ |
$1.223113832$ |
5.059419044 |
\( -\frac{3499281}{32768} a + \frac{12237507}{16384} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 4 a + 21\) , \( 20 a + 31\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(4a+21\right){x}+20a+31$ |
26244.2-e1 |
26244.2-e |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{7} \cdot 3^{12} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$0.607627350$ |
$2.973335577$ |
5.462886890 |
\( \frac{20817}{16} a + \frac{26271}{16} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( -5 a + 3\) , \( 2 a - 5\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-5a+3\right){x}+2a-5$ |
26244.2-e2 |
26244.2-e |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{13} \cdot 3^{20} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.2 |
$1$ |
\( 2 \) |
$1.822882051$ |
$0.991111859$ |
5.462886890 |
\( -\frac{11308041}{4096} a + \frac{12488499}{4096} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 40 a - 42\) , \( 101 a + 22\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(40a-42\right){x}+101a+22$ |
26244.2-f1 |
26244.2-f |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{13} \cdot 3^{8} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1 |
$1$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$2.973335577$ |
2.996840572 |
\( \frac{11308041}{4096} a + \frac{590229}{2048} \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( -5 a\) , \( 5 a - 4\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}-5a{x}+5a-4$ |
26244.2-f2 |
26244.2-f |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{7} \cdot 3^{24} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.2 |
$1$ |
\( 2^{2} \) |
$1$ |
$0.991111859$ |
2.996840572 |
\( -\frac{20817}{16} a + 2943 \) |
\( \bigl[1\) , \( -1\) , \( a\) , \( 40 a - 15\) , \( 20 a + 103\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(40a-15\right){x}+20a+103$ |
26244.2-g1 |
26244.2-g |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{29} \cdot 3^{8} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1 |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$1.223113832$ |
2.465565733 |
\( \frac{3541149801}{16777216} a - \frac{17758829907}{16777216} \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( -5 a - 23\) , \( 27 a + 67\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-5a-23\right){x}+27a+67$ |
26244.2-g2 |
26244.2-g |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{23} \cdot 3^{24} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.2 |
$1$ |
\( 2^{3} \) |
$1$ |
$0.407704610$ |
2.465565733 |
\( -\frac{3499281}{32768} a + \frac{12237507}{16384} \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( 40 a + 187\) , \( -588 a - 1011\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(40a+187\right){x}-588a-1011$ |
26244.2-h1 |
26244.2-h |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{29} \cdot 3^{20} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.2 |
$1$ |
\( 2 \cdot 5 \) |
$0.820812680$ |
$0.407704610$ |
5.059419044 |
\( -\frac{3541149801}{16777216} a - \frac{7108840053}{8388608} \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( 40 a - 245\) , \( 708 a - 2307\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(40a-245\right){x}+708a-2307$ |
26244.2-h2 |
26244.2-h |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{23} \cdot 3^{12} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1 |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \) |
$0.273604226$ |
$1.223113832$ |
5.059419044 |
\( \frac{3499281}{32768} a + \frac{20975733}{32768} \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( -5 a + 25\) , \( -21 a + 51\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-5a+25\right){x}-21a+51$ |
26244.2-i1 |
26244.2-i |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{13} \cdot 3^{20} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.2 |
$1$ |
\( 2 \) |
$1.822882051$ |
$0.991111859$ |
5.462886890 |
\( \frac{11308041}{4096} a + \frac{590229}{2048} \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( -41 a - 2\) , \( -102 a + 123\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-41a-2\right){x}-102a+123$ |
26244.2-i2 |
26244.2-i |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{7} \cdot 3^{12} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$0.607627350$ |
$2.973335577$ |
5.462886890 |
\( -\frac{20817}{16} a + 2943 \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( 4 a - 2\) , \( -3 a - 3\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(4a-2\right){x}-3a-3$ |
26244.2-j1 |
26244.2-j |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{7} \cdot 3^{24} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.2 |
$1$ |
\( 2^{2} \) |
$1$ |
$0.991111859$ |
2.996840572 |
\( \frac{20817}{16} a + \frac{26271}{16} \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( -41 a + 25\) , \( -21 a + 123\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-41a+25\right){x}-21a+123$ |
26244.2-j2 |
26244.2-j |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{13} \cdot 3^{8} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3B.1.1 |
$1$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$2.973335577$ |
2.996840572 |
\( -\frac{11308041}{4096} a + \frac{12488499}{4096} \) |
\( \bigl[1\) , \( -1\) , \( a + 1\) , \( 4 a - 5\) , \( -6 a + 1\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(4a-5\right){x}-6a+1$ |
26244.2-k1 |
26244.2-k |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{4} \cdot 3^{24} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3$ |
3B.1.2 |
$1$ |
\( 2^{2} \) |
$1.373693536$ |
$1.101861126$ |
9.153510392 |
\( -\frac{35937}{4} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -56\) , \( -161\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-56{x}-161$ |
26244.2-k2 |
26244.2-k |
$2$ |
$3$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{12} \cdot 3^{8} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3$ |
3B.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$0.457897845$ |
$3.305583379$ |
9.153510392 |
\( \frac{109503}{64} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( 4\) , \( -1\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+4{x}-1$ |
26244.2-l1 |
26244.2-l |
$4$ |
$21$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{14} \cdot 3^{24} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3, 7$ |
3B.1.2, 7B.2.1[2] |
$1$ |
\( 7^{2} \) |
$0.719702593$ |
$0.194495073$ |
10.36976045 |
\( -\frac{189613868625}{128} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -9695\) , \( -364985\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-9695{x}-364985$ |
26244.2-l2 |
26244.2-l |
$4$ |
$21$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{6} \cdot 3^{8} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3, 7$ |
3B.1.1, 7B.2.1[2] |
$1$ |
\( 3^{2} \) |
$1.679306052$ |
$4.084396538$ |
10.36976045 |
\( -\frac{140625}{8} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -5\) , \( 5\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-5{x}+5$ |
26244.2-l3 |
26244.2-l |
$4$ |
$21$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{42} \cdot 3^{8} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3, 7$ |
3B.1.1, 7B.2.1[2] |
$1$ |
\( 3^{2} \cdot 7^{2} \) |
$0.239900864$ |
$0.583485219$ |
10.36976045 |
\( -\frac{1159088625}{2097152} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -95\) , \( -697\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-95{x}-697$ |
26244.2-l4 |
26244.2-l |
$4$ |
$21$ |
\(\Q(\sqrt{-7}) \) |
$2$ |
$[0, 1]$ |
26244.2 |
\( 2^{2} \cdot 3^{8} \) |
\( 2^{2} \cdot 3^{24} \) |
$3.00916$ |
$(a), (-a+1), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$3, 7$ |
3B.1.2, 7B.2.1[2] |
$1$ |
\( 1 \) |
$5.037918157$ |
$1.361465512$ |
10.36976045 |
\( \frac{3375}{2} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( 25\) , \( 1\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+25{x}+1$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.