Base field \(\Q(\sqrt{-7}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
gp: K = nfinit(Polrev([2, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,0]),K([-1,0]),K([1,0]),K([-95,0]),K([-697,0])])
gp: E = ellinit([Polrev([1,0]),Polrev([-1,0]),Polrev([1,0]),Polrev([-95,0]),Polrev([-697,0])], K);
magma: E := EllipticCurve([K![1,0],K![-1,0],K![1,0],K![-95,0],K![-697,0]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((162)\) | = | \((a)\cdot(-a+1)\cdot(3)^{4}\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 26244 \) | = | \(2\cdot2\cdot9^{4}\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-169869312)\) | = | \((a)^{21}\cdot(-a+1)^{21}\cdot(3)^{4}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 28855583159353344 \) | = | \(2^{21}\cdot2^{21}\cdot9^{4}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( -\frac{1159088625}{2097152} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(-4 a - 1 : -12 a - 6 : 1\right)$ |
Height | \(0.23990086462566904313136453079413008001\) |
Torsion structure: | \(\Z/3\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(19 : -74 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 0.23990086462566904313136453079413008001 \) | ||
Period: | \( 0.58348521984058875136882165159873123061 \) | ||
Tamagawa product: | \( 441 \) = \(( 3 \cdot 7 )\cdot( 3 \cdot 7 )\cdot1\) | ||
Torsion order: | \(3\) | ||
Leading coefficient: | \( 10.369760452363677327351334332217861112 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((a)\) | \(2\) | \(21\) | \(I_{21}\) | Split multiplicative | \(-1\) | \(1\) | \(21\) | \(21\) |
\((-a+1)\) | \(2\) | \(21\) | \(I_{21}\) | Split multiplicative | \(-1\) | \(1\) | \(21\) | \(21\) |
\((3)\) | \(9\) | \(1\) | \(II\) | Additive | \(1\) | \(4\) | \(4\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(3\) | 3B.1.1 |
\(7\) | 7B.2.1[2] |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3, 7 and 21.
Its isogeny class
26244.2-l
consists of curves linked by isogenies of
degrees dividing 21.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 162.c2 |
\(\Q\) | 7938.x2 |