Base field \(\Q(\sqrt{-7}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
gp: K = nfinit(Polrev([2, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,1]),K([0,0]),K([0,0]),K([13,59]),K([-335,-23])])
gp: E = ellinit([Polrev([0,1]),Polrev([0,0]),Polrev([0,0]),Polrev([13,59]),Polrev([-335,-23])], K);
magma: E := EllipticCurve([K![0,1],K![0,0],K![0,0],K![13,59],K![-335,-23]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((66a-12)\) | = | \((a)^{6}\cdot(-a+1)\cdot(-2a+1)\cdot(3)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 8064 \) | = | \(2^{6}\cdot2\cdot7\cdot9\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-2903040a-1161216)\) | = | \((a)^{16}\cdot(-a+1)^{10}\cdot(-2a+1)^{2}\cdot(3)^{4}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 21574761578496 \) | = | \(2^{16}\cdot2^{10}\cdot7^{2}\cdot9^{4}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{5744242075}{580608} a - \frac{638675959}{41472} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) | |
Generator | $\left(-2 a + 6 : a + 7 : 1\right)$ | |
Height | \(0.18423650778932883800791027104842765213\) | |
Torsion structure: | \(\Z/2\Z\oplus\Z/2\Z\) | |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| ||
Torsion generators: | $\left(7 a - 9 : a + 7 : 1\right)$ | $\left(-\frac{17}{4} a + \frac{9}{2} : -\frac{1}{8} a - \frac{17}{4} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 0.18423650778932883800791027104842765213 \) | ||
Period: | \( 0.93377681603006889605780288109429423873 \) | ||
Tamagawa product: | \( 320 \) = \(2^{2}\cdot( 2 \cdot 5 )\cdot2\cdot2^{2}\) | ||
Torsion order: | \(4\) | ||
Leading coefficient: | \( 5.2018730232296899020594538408286863783 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((a)\) | \(2\) | \(4\) | \(I_{6}^{*}\) | Additive | \(1\) | \(6\) | \(16\) | \(0\) |
\((-a+1)\) | \(2\) | \(10\) | \(I_{10}\) | Split multiplicative | \(-1\) | \(1\) | \(10\) | \(10\) |
\((-2a+1)\) | \(7\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
\((3)\) | \(9\) | \(4\) | \(I_{4}\) | Split multiplicative | \(-1\) | \(1\) | \(4\) | \(4\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
8064.2-e
consists of curves linked by isogenies of
degrees dividing 4.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.