Properties

Label 2.0.7.1-8064.7-b4
Base field Q(7)\Q(\sqrt{-7})
Conductor norm 8064 8064
CM no
Base change no
Q-curve yes
Torsion order 2 2
Rank 0 0

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(7)\Q(\sqrt{-7})

Generator aa, with minimal polynomial x2x+2 x^{2} - x + 2 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
gp: K = nfinit(Polrev([2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

y2+(a+1)xy=x3+(a+1)x2+(1928a+2700)x19010a+15206{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-1928a+2700\right){x}-19010a+15206
sage: E = EllipticCurve([K([1,1]),K([1,1]),K([0,0]),K([2700,-1928]),K([15206,-19010])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([1,1]),Polrev([0,0]),Polrev([2700,-1928]),Polrev([15206,-19010])], K);
 
magma: E := EllipticCurve([K![1,1],K![1,1],K![0,0],K![2700,-1928],K![15206,-19010]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(94a354:178a+538:1)\left(\frac{9}{4} a - \frac{35}{4} : \frac{17}{8} a + \frac{53}{8} : 1\right)0022

Invariants

Conductor: N\frak{N} = (66a54)(66a-54) = (a)(a+1)6(2a+1)(3)(a)\cdot(-a+1)^{6}\cdot(-2a+1)\cdot(3)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 8064 8064 = 226792\cdot2^{6}\cdot7\cdot9
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 358579185930a+1927890446706358579185930a+1927890446706
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (358579185930a+1927890446706)(358579185930a+1927890446706) = (a)(a+1)19(2a+1)4(3)16(a)\cdot(-a+1)^{19}\cdot(-2a+1)^{4}\cdot(3)^{16}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 4665221026606764776226816 4665221026606764776226816 = 2219749162\cdot2^{19}\cdot7^{4}\cdot9^{16}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 63593877291834218578658 \frac{6359387729183}{4218578658}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 00
Regulator: Reg(E/K)\mathrm{Reg}(E/K) = 1 1
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) = 1 1
Global period: Ω(E/K)\Omega(E/K) 0.242216540448250546346412529568477292240 0.242216540448250546346412529568477292240
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 16 16  =  122221\cdot2\cdot2^{2}\cdot2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 1.4647879530342590172098244799766989577 1.4647879530342590172098244799766989577
Analytic order of Ш: Шan{}_{\mathrm{an}}= 4 4 (rounded)

BSD formula

1.464787953L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/240.242217116222.6457511.464787953\displaystyle 1.464787953 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 4 \cdot 0.242217 \cdot 1 \cdot 16 } { {2^2 \cdot 2.645751} } \approx 1.464787953

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(a)(a) 22 11 I1I_{1} Non-split multiplicative 11 11 11 11
(a+1)(-a+1) 22 22 I9I_{9}^{*} Additive 11 66 1919 11
(2a+1)(-2a+1) 77 44 I4I_{4} Split multiplicative 1-1 11 44 44
(3)(3) 99 22 I16I_{16} Non-split multiplicative 11 11 1616 1616

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4, 8 and 16.
Its isogeny class 8064.7-b consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.