Generator a, with minimal polynomial
x2−x+20; class number 5.
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([20, -1, 1]))
gp: K = nfinit(Polrev([20, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![20, -1, 1]);
y2+(a+1)xy=x3−ax2+(30a−98)x+152a+712
sage: E = EllipticCurve([K([1,1]),K([0,-1]),K([0,0]),K([-98,30]),K([712,152])])
gp: E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([0,0]),Polrev([-98,30]),Polrev([712,152])], K);
magma: E := EllipticCurve([K![1,1],K![0,-1],K![0,0],K![-98,30],K![712,152]]);
This is not a global minimal
model: it is minimal
at all primes except (5,a).
No global minimal model exists.
sage: E.is_global_minimal_model()
Z
P | h^(P) | Order |
(−28:48a−16:1) | 1.4377781612433562159879100404601488830 | ∞ |
Conductor: |
N |
= |
(2a+6) |
= |
(2,a)⋅(2,a+1)6 |
|
Conductor norm: |
N(N) |
= |
128 |
= |
2⋅26 |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
−113708444a−25512020 |
Discriminant ideal:
|
(Δ)
|
= |
(−113708444a−25512020) |
= |
(2,a)2⋅(2,a+1)28⋅(5,a)12 |
|
Discriminant norm:
|
N(Δ)
|
= |
262144000000000000 |
= |
22⋅228⋅512 |
sage: E.discriminant().norm()
magma: Norm(Discriminant(E));
|
Minimal discriminant: |
Dmin |
= |
(268435456,4a+159822988) |
= |
(2,a)2⋅(2,a+1)28 |
Minimal discriminant norm: |
N(Dmin) |
= |
1073741824 |
= |
22⋅228 |
j-invariant: |
j |
= |
−1024179945a+256111409 |
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
1
|
|
Mordell-Weil rank: |
r |
= |
1 |
Regulator:
|
Reg(E/K) |
≈ |
1.4377781612433562159879100404601488830
|
Néron-Tate Regulator:
|
RegNT(E/K) |
≈ |
2.8755563224867124319758200809202977660
|
Global period: |
Ω(E/K) | ≈ |
4.8581560426924287306412954705103335460 |
Tamagawa product: |
∏pcp | = |
4
= 2⋅2⋅1
|
Torsion order: |
#E(K)tor | = |
1 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 6.2869467827912017212775958016689696145 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
6.286946783≈L′(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈12⋅8.8881941⋅4.858156⋅2.875556⋅4≈6.286946783
magma: LocalInformation(E);
This elliptic curve is not semistable.
There
are 2 primes p
of bad reduction.
Primes of good reduction for the curve but which divide the
discriminant of the model above (if any) are included.
This curve has non-trivial cyclic isogenies of degree d for d=
5.
Its isogeny class
128.7-d
consists of curves linked by isogenies of
degree 5.
This elliptic curve is a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.