Properties

Label 2.0.79.1-128.7-d2
Base field Q(79)\Q(\sqrt{-79})
Conductor norm 128 128
CM no
Base change no
Q-curve yes
Torsion order 1 1
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(79)\Q(\sqrt{-79})

Generator aa, with minimal polynomial x2x+20 x^{2} - x + 20 ; class number 55.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([20, -1, 1]))
 
gp: K = nfinit(Polrev([20, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![20, -1, 1]);
 

Weierstrass equation

y2+(a+1)xy=x3ax2+(30a98)x+152a+712{y}^2+\left(a+1\right){x}{y}={x}^3-a{x}^2+\left(30a-98\right){x}+152a+712
sage: E = EllipticCurve([K([1,1]),K([0,-1]),K([0,0]),K([-98,30]),K([712,152])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([0,0]),Polrev([-98,30]),Polrev([712,152])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,-1],K![0,0],K![-98,30],K![712,152]]);
 

This is not a global minimal model: it is minimal at all primes except (5,a)(5,a). No global minimal model exists.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

Z\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(28:48a16:1)\left(-28 : 48 a - 16 : 1\right)1.43777816124335621598791004046014888301.4377781612433562159879100404601488830\infty

Invariants

Conductor: N\frak{N} = (2a+6)(2a+6) = (2,a)(2,a+1)6(2,a)\cdot(2,a+1)^{6}
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 128 128 = 2262\cdot2^{6}
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 113708444a25512020-113708444a-25512020
Discriminant ideal: (Δ)(\Delta) = (113708444a25512020)(-113708444a-25512020) = (2,a)2(2,a+1)28(5,a)12(2,a)^{2}\cdot(2,a+1)^{28}\cdot(5,a)^{12}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Δ)N(\Delta) = 262144000000000000 262144000000000000 = 222285122^{2}\cdot2^{28}\cdot5^{12}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
Minimal discriminant: Dmin\frak{D}_{\mathrm{min}} = (268435456,4a+159822988)(268435456,4a+159822988) = (2,a)2(2,a+1)28(2,a)^{2}\cdot(2,a+1)^{28}
Minimal discriminant norm: N(Dmin)N(\frak{D}_{\mathrm{min}}) = 1073741824 1073741824 = 222282^{2}\cdot2^{28}
j-invariant: jj = 1799451024a+111409256 -\frac{179945}{1024} a + \frac{111409}{256}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 1.4377781612433562159879100404601488830 1.4377781612433562159879100404601488830
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 2.8755563224867124319758200809202977660 2.8755563224867124319758200809202977660
Global period: Ω(E/K)\Omega(E/K) 4.8581560426924287306412954705103335460 4.8581560426924287306412954705103335460
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 4 4  =  2212\cdot2\cdot1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 11
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 6.2869467827912017212775958016689696145 6.2869467827912017212775958016689696145
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

6.286946783L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/214.8581562.8755564128.8881946.286946783\displaystyle 6.286946783 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 4.858156 \cdot 2.875556 \cdot 4 } { {1^2 \cdot 8.888194} } \approx 6.286946783

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes p\frak{p} of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(2,a)(2,a) 22 22 I2I_{2} Split multiplicative 1-1 11 22 22
(2,a+1)(2,a+1) 22 22 I18I_{18}^{*} Additive 1-1 66 2828 1010
(5,a)(5,a) 55 11 I0I_0 Good 11 00 00 00

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
55 5B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 5.
Its isogeny class 128.7-d consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.