Properties

Label 2.0.8.1-32400.3-g6
Base field Q(2)\Q(\sqrt{-2})
Conductor norm 32400 32400
CM no
Base change yes
Q-curve yes
Torsion order 4 4
Rank 0 0

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(2)\Q(\sqrt{-2})

Generator aa, with minimal polynomial x2+2 x^{2} + 2 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
 

Weierstrass equation

y2+axy=x3x212006x+511434{y}^2+a{x}{y}={x}^{3}-{x}^{2}-12006{x}+511434
sage: E = EllipticCurve([K([0,1]),K([-1,0]),K([0,0]),K([-12006,0]),K([511434,0])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,0]),Polrev([0,0]),Polrev([-12006,0]),Polrev([511434,0])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,0],K![0,0],K![-12006,0],K![511434,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(126:63a:1)\left(-126 : 63 a : 1\right)0022
(1232:1234a:1)\left(\frac{123}{2} : -\frac{123}{4} a : 1\right)0022

Invariants

Conductor: N\frak{N} = (180)(180) = (a)4(a1)2(a1)2(5)(a)^{4}\cdot(-a-1)^{2}\cdot(a-1)^{2}\cdot(5)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 32400 32400 = 243232252^{4}\cdot3^{2}\cdot3^{2}\cdot25
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 419904000000419904000000
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (419904000000)(419904000000) = (a)24(a1)8(a1)8(5)6(a)^{24}\cdot(-a-1)^{8}\cdot(a-1)^{8}\cdot(5)^{6}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 176319369216000000000000 176319369216000000000000 = 22438382562^{24}\cdot3^{8}\cdot3^{8}\cdot25^{6}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 41029158887299000000 \frac{4102915888729}{9000000}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 00
Regulator: Reg(E/K)\mathrm{Reg}(E/K) = 1 1
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) = 1 1
Global period: Ω(E/K)\Omega(E/K) 0.215715023391017743943972231469247740380 0.215715023391017743943972231469247740380
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 384 384  =  222222(23)2^{2}\cdot2^{2}\cdot2^{2}\cdot( 2 \cdot 3 )
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 44
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 1.8304026701232403778852285264163093811 1.8304026701232403778852285264163093811
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

1.830402670L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/210.2157151384422.8284271.830402670\displaystyle 1.830402670 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 0.215715 \cdot 1 \cdot 384 } { {4^2 \cdot 2.828427} } \approx 1.830402670

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(a)(a) 22 44 I16I_{16}^{*} Additive 11 44 2424 1212
(a1)(-a-1) 33 44 I2I_{2}^{*} Additive 1-1 22 88 22
(a1)(a-1) 33 44 I2I_{2}^{*} Additive 1-1 22 88 22
(5)(5) 2525 66 I6I_{6} Split multiplicative 1-1 11 66 66

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2Cs
33 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 32400.3-g consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is a Q\Q-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
Q\Q 720.j3
Q\Q 2880.a3