Properties

Label 2.0.8.1-7056.2-e4
Base field Q(2)\Q(\sqrt{-2})
Conductor norm 7056 7056
CM no
Base change yes
Q-curve yes
Torsion order 2 2
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(2)\Q(\sqrt{-2})

Generator aa, with minimal polynomial x2+2 x^{2} + 2 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
 

Weierstrass equation

y2+axy+ay=x31007x+12488{y}^2+a{x}{y}+a{y}={x}^{3}-1007{x}+12488
sage: E = EllipticCurve([K([0,1]),K([0,0]),K([0,1]),K([-1007,0]),K([12488,0])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,0]),Polrev([0,1]),Polrev([-1007,0]),Polrev([12488,0])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,0],K![0,1],K![-1007,0],K![12488,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(754:798a158:1)\left(\frac{75}{4} : -\frac{79}{8} a - \frac{15}{8} : 1\right)1.16083368236795980034887453029603383241.1608336823679598003488745302960338324\infty
(372:394a:1)\left(\frac{37}{2} : -\frac{39}{4} a : 1\right)0022

Invariants

Conductor: N\frak{N} = (84)(84) = (a)4(a1)(a1)(7)(a)^{4}\cdot(-a-1)\cdot(a-1)\cdot(7)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 7056 7056 = 2433492^{4}\cdot3\cdot3\cdot49
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 30243024
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (3024)(3024) = (a)8(a1)3(a1)3(7)(a)^{8}\cdot(-a-1)^{3}\cdot(a-1)^{3}\cdot(7)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 9144576 9144576 = 283333492^{8}\cdot3^{3}\cdot3^{3}\cdot49
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 7080974546692189 \frac{7080974546692}{189}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 1.1608336823679598003488745302960338324 1.1608336823679598003488745302960338324
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 2.3216673647359196006977490605920676648 2.3216673647359196006977490605920676648
Global period: Ω(E/K)\Omega(E/K) 1.39085186580099922122501587665379307130 1.39085186580099922122501587665379307130
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 18 18  =  23312\cdot3\cdot3\cdot1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 5.1374593002317605989361706706006737096 5.1374593002317605989361706706006737096
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

5.137459300L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/211.3908522.32166718222.8284275.137459300\displaystyle 5.137459300 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 1.390852 \cdot 2.321667 \cdot 18 } { {2^2 \cdot 2.828427} } \approx 5.137459300

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(a)(a) 22 22 I0I_0^{*} Additive 1-1 44 88 00
(a1)(-a-1) 33 33 I3I_{3} Split multiplicative 1-1 11 33 33
(a1)(a-1) 33 33 I3I_{3} Split multiplicative 1-1 11 33 33
(7)(7) 4949 11 I1I_{1} Split multiplicative 1-1 11 11 11

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 7056.2-e consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a Q\Q-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
Q\Q 336.e1
Q\Q 1344.m1