Properties

Label 2.0.88.1-784.1-f4
Base field Q(22)\Q(\sqrt{-22})
Conductor norm 784 784
CM no
Base change yes
Q-curve yes
Torsion order 2 2
Rank 0 0

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(22)\Q(\sqrt{-22})

Generator aa, with minimal polynomial x2+22 x^{2} + 22 ; class number 22.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([22, 0, 1]))
 
gp: K = nfinit(Polrev([22, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![22, 0, 1]);
 

Weierstrass equation

y2+axy=x3x2128x+832{y}^2+a{x}{y}={x}^3-{x}^2-128{x}+832
sage: E = EllipticCurve([K([0,1]),K([-1,0]),K([0,0]),K([-128,0]),K([832,0])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,0]),Polrev([0,0]),Polrev([-128,0]),Polrev([832,0])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,0],K![0,0],K![-128,0],K![832,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(132:134a:1)\left(\frac{13}{2} : -\frac{13}{4} a : 1\right)0022

Invariants

Conductor: N\frak{N} = (28)(28) = (2,a)4(7)(2,a)^{4}\cdot(7)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 784 784 = 24492^{4}\cdot49
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 6023628860236288
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (60236288)(60236288) = (2,a)18(7)6(2,a)^{18}\cdot(7)^{6}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 3628410392018944 3628410392018944 = 2184962^{18}\cdot49^{6}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 4956477625941192 \frac{4956477625}{941192}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 00
Regulator: Reg(E/K)\mathrm{Reg}(E/K) = 1 1
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) = 1 1
Global period: Ω(E/K)\Omega(E/K) 1.31312570279100809324892748443678470128 1.31312570279100809324892748443678470128
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 24 24  =  22(23)2^{2}\cdot( 2 \cdot 3 )
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 3.3595120860000879036050131487196610703 3.3595120860000879036050131487196610703
Analytic order of Ш: Шan{}_{\mathrm{an}}= 4 4 (rounded)

BSD formula

3.359512086L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/241.313126124229.3808323.359512086\displaystyle 3.359512086 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 4 \cdot 1.313126 \cdot 1 \cdot 24 } { {2^2 \cdot 9.380832} } \approx 3.359512086

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(2,a)(2,a) 22 44 I10I_{10}^{*} Additive 11 44 1818 66
(7)(7) 4949 66 I6I_{6} Split multiplicative 1-1 11 66 66

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B
33 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 784.1-f consists of curves linked by isogenies of degrees dividing 18.

Base change

This elliptic curve is a Q\Q-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
Q\Q 448.a3
Q\Q 13552.w3