Base field \(\Q(\sqrt{3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(\frac{2521}{98} : -\frac{2521}{196} a + \frac{216513}{1372} : 1\right)$ | $3.8269817694884771133715028814573805997$ | $\infty$ |
$\left(-\frac{31}{4} : \frac{31}{8} a : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((17a+51)\) | = | \((a+1)\cdot(a)\cdot(17)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 1734 \) | = | \(2\cdot3\cdot289\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||||
Discriminant: | $\Delta$ | = | $-2927177028$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-2927177028)\) | = | \((a+1)^{4}\cdot(a)^{32}\cdot(17)\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 8568365353250912784 \) | = | \(2^{4}\cdot3^{32}\cdot289\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||||
j-invariant: | $j$ | = | \( \frac{1276229915423}{2927177028} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 3.8269817694884771133715028814573805997 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 7.6539635389769542267430057629147611994 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 0.98700620318056212664186789359698854142 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 4 \) = \(2\cdot2\cdot1\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 2.1807990443685893313128782856780766879 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$\displaystyle 2.180799044 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 0.987006 \cdot 7.653964 \cdot 4 } { {2^2 \cdot 3.464102} } \approx 2.180799044$
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((a+1)\) | \(2\) | \(2\) | \(I_{4}\) | Non-split multiplicative | \(1\) | \(1\) | \(4\) | \(4\) |
\((a)\) | \(3\) | \(2\) | \(I_{32}\) | Non-split multiplicative | \(1\) | \(1\) | \(32\) | \(32\) |
\((17)\) | \(289\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class
1734.1-b
consists of curves linked by isogenies of
degrees dividing 8.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 306.b6 |
\(\Q\) | 816.b6 |