Properties

Label 2.2.12.1-3042.1-e3
Base field Q(3)\Q(\sqrt{3})
Conductor norm 3042 3042
CM no
Base change yes
Q-curve yes
Torsion order 4 4
Rank 0 0

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(3)\Q(\sqrt{3})

Generator aa, with minimal polynomial x23 x^{2} - 3 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 1]))
 
gp: K = nfinit(Polrev([-3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
 

Weierstrass equation

y2+axy=x363x209{y}^2+a{x}{y}={x}^{3}-63{x}-209
sage: E = EllipticCurve([K([0,1]),K([0,0]),K([0,0]),K([-63,0]),K([-209,0])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,0]),Polrev([0,0]),Polrev([-63,0]),Polrev([-209,0])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,0],K![0,0],K![-63,0],K![-209,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(4a+2:a+6:1)\left(-4 a + 2 : -a + 6 : 1\right)0022
(194:198a:1)\left(-\frac{19}{4} : \frac{19}{8} a : 1\right)0022

Invariants

Conductor: N\frak{N} = (39a+39)(39a+39) = (a+1)(a)2(a+4)(a4)(a+1)\cdot(a)^{2}\cdot(a+4)\cdot(a-4)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 3042 3042 = 23213132\cdot3^{2}\cdot13\cdot13
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 1825218252
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (18252)(18252) = (a+1)4(a)6(a+4)2(a4)2(a+1)^{4}\cdot(a)^{6}\cdot(a+4)^{2}\cdot(a-4)^{2}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 333135504 333135504 = 24361321322^{4}\cdot3^{6}\cdot13^{2}\cdot13^{2}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 1033364331676 \frac{1033364331}{676}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 00
Regulator: Reg(E/K)\mathrm{Reg}(E/K) = 1 1
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) = 1 1
Global period: Ω(E/K)\Omega(E/K) 2.8675937787356667391714538161717241907 2.8675937787356667391714538161717241907
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 64 64  =  2222222^{2}\cdot2^{2}\cdot2\cdot2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 44
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 3.3112120801590666686988426655417238167 3.3112120801590666686988426655417238167
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

3.311212080L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/212.867594164423.4641023.311212080\displaystyle 3.311212080 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 2.867594 \cdot 1 \cdot 64 } { {4^2 \cdot 3.464102} } \approx 3.311212080

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(a+1)(a+1) 22 44 I4I_{4} Split multiplicative 1-1 11 44 44
(a)(a) 33 44 I0I_0^{*} Additive 1-1 22 66 00
(a+4)(a+4) 1313 22 I2I_{2} Non-split multiplicative 11 11 22 22
(a4)(a-4) 1313 22 I2I_{2} Non-split multiplicative 11 11 22 22

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 3042.1-e consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a Q\Q-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
Q\Q 234.d1
Q\Q 1872.g1