Properties

Label 2.2.12.1-768.1-p3
Base field \(\Q(\sqrt{3}) \)
Conductor norm \( 768 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 1]))
 
gp: K = nfinit(Polrev([-3, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(2286a-3957\right){x}-77553a+134325\)
sage: E = EllipticCurve([K([0,0]),K([-1,-1]),K([0,0]),K([-3957,2286]),K([134325,-77553])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,-1]),Polrev([0,0]),Polrev([-3957,2286]),Polrev([134325,-77553])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,-1],K![0,0],K![-3957,2286],K![134325,-77553]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-3 a + 6 : 123 a - 213 : 1\right)$$0.42366800567945939665896357353120487811$$\infty$
$\left(-14 a + 25 : 0 : 1\right)$$0$$2$
$\left(30 a - 51 : 0 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((16a)\) = \((a+1)^{8}\cdot(a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 768 \) = \(2^{8}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-4608$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-4608)\) = \((a+1)^{18}\cdot(a)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 21233664 \) = \(2^{18}\cdot3^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{1122088}{9} a + \frac{1989808}{9} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.42366800567945939665896357353120487811 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.847336011358918793317927147062409756220 \)
Global period: $\Omega(E/K)$ \( 17.976744299323390120705109272463816060 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 8 \)  =  \(2^{2}\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.1985993056964826472999359845881297854 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 2.198599306 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 17.976744 \cdot 0.847336 \cdot 8 } { {4^2 \cdot 3.464102} } \approx 2.198599306$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a+1)\) \(2\) \(4\) \(I_{6}^{*}\) Additive \(-1\) \(8\) \(18\) \(0\)
\((a)\) \(3\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 768.1-p consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.