Properties

Label 2.2.13.1-1024.1-j1
Base field \(\Q(\sqrt{13}) \)
Conductor norm \( 1024 \)
CM no
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{13}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, -1, 1]))
 
gp: K = nfinit(Polrev([-3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(21a-49\right){x}-72a+166\)
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([0,0]),K([-49,21]),K([166,-72])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([0,0]),Polrev([-49,21]),Polrev([166,-72])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,0],K![0,0],K![-49,21],K![166,-72]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-a + 2 : 2 a - 4 : 1\right)$$0.11500820717835919431656664012395939607$$\infty$
$\left(-a + 4 : 2 : 1\right)$$0.23001641435671838863313328024791879214$$\infty$

Invariants

Conductor: $\frak{N}$ = \((32)\) = \((2)^{5}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 1024 \) = \(4^{5}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-512$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-512)\) = \((2)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 262144 \) = \(4^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( -74088 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(2\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.013226887718380391312437841550596433426 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.05290755087352156524975136620238573370400 \)
Global period: $\Omega(E/K)$ \( 27.441518417576719876922490201315525614 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 4 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.6106979718798009919584338926085342271 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 1.610697972 \approx L^{(2)}(E/K,1)/2! \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 27.441518 \cdot 0.052908 \cdot 4 } { {1^2 \cdot 3.605551} } \approx 1.610697972$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2)\) \(4\) \(4\) \(I_0^{*}\) Additive \(1\) \(5\) \(9\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Nn

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 1024.1-j consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.