Properties

Label 2.2.156.1-16.1-f1
Base field Q(39)\Q(\sqrt{39})
Conductor norm 16 16
CM yes (3-3)
Base change no
Q-curve yes
Torsion order 2 2
Rank 0 0

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(39)\Q(\sqrt{39})

Generator aa, with minimal polynomial x239 x^{2} - 39 ; class number 22.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-39, 0, 1]))
 
gp: K = nfinit(Polrev([-39, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-39, 0, 1]);
 

Weierstrass equation

y2=x3ax2+13x678917764269a+4239840078928{y}^2={x}^{3}-a{x}^{2}+13{x}-678917764269a+4239840078928
sage: E = EllipticCurve([K([0,0]),K([0,-1]),K([0,0]),K([13,0]),K([4239840078928,-678917764269])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,-1]),Polrev([0,0]),Polrev([13,0]),Polrev([4239840078928,-678917764269])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,-1],K![0,0],K![13,0],K![4239840078928,-678917764269]]);
 

This is not a global minimal model: it is minimal at all primes except (2,a+1)(2,a+1). No global minimal model exists.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1633a10196:0:1)\left(1633 a - 10196 : 0 : 1\right)0022

Invariants

Conductor: N\frak{N} = (4)(4) = (2,a+1)4(2,a+1)^{4}
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 16 16 = 242^{4}
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 10241024
Discriminant ideal: (Δ)(\Delta) = (1024)(1024) = (2,a+1)20(2,a+1)^{20}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Δ)N(\Delta) = 1048576 1048576 = 2202^{20}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
Minimal discriminant: Dmin\frak{D}_{\mathrm{min}} = (16)(16) = (2,a+1)8(2,a+1)^{8}
Minimal discriminant norm: N(Dmin)N(\frak{D}_{\mathrm{min}}) = 256 256 = 282^{8}
j-invariant: jj = 0 0
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z[(1+3)/2]\Z[(1+\sqrt{-3})/2]    (potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = N(U(1))N(\mathrm{U}(1))

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 00
Regulator: Reg(E/K)\mathrm{Reg}(E/K) = 1 1
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) = 1 1
Global period: Ω(E/K)\Omega(E/K) 17.695031908454309764234228747255048751 17.695031908454309764234228747255048751
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 2 2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 2.8334727910228962235088803246755598751 2.8334727910228962235088803246755598751
Analytic order of Ш: Шan{}_{\mathrm{an}}= 4 4 (rounded)

BSD formula

2.833472791L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/2417.695032122212.4899962.833472791\displaystyle 2.833472791 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 4 \cdot 17.695032 \cdot 1 \cdot 2 } { {2^2 \cdot 12.489996} } \approx 2.833472791

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There is only one prime p\frak{p} of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(2,a+1)(2,a+1) 22 22 I0I_0^{*} Additive 11 44 88 00

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B

For all other primes pp, the image is a Borel subgroup if p=3p=3, the normalizer of a split Cartan subgroup if (3p)=+1\left(\frac{ -3 }{p}\right)=+1 or the normalizer of a nonsplit Cartan subgroup if (3p)=1\left(\frac{ -3 }{p}\right)=-1.

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 16.1-f consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.