Properties

Label 2.2.21.1-735.1-i2
Base field \(\Q(\sqrt{21}) \)
Conductor norm \( 735 \)
CM no
Base change no
Q-curve no
Torsion order \( 7 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{21}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-5, -1, 1]))
 
gp: K = nfinit(Polrev([-5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -1, 1]);
 

Weierstrass equation

\({y}^2+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-21a+59\right){x}-227a+632\)
sage: E = EllipticCurve([K([0,0]),K([-1,1]),K([0,1]),K([59,-21]),K([632,-227])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,1]),Polrev([0,1]),Polrev([59,-21]),Polrev([632,-227])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,1],K![0,1],K![59,-21],K![632,-227]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{7}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-\frac{11}{25} a - \frac{9}{25} : \frac{821}{125} a - \frac{2526}{125} : 1\right)$$0.61144419281788467609571732128800487399$$\infty$
$\left(-8 a + 21 : -47 a + 129 : 1\right)$$0$$7$

Invariants

Conductor: $\frak{N}$ = \((7a+28)\) = \((-a+2)\cdot(-a+1)\cdot(a+3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 735 \) = \(3\cdot5\cdot7^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-1512a-241353$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-1512a-241353)\) = \((-a+2)^{7}\cdot(-a+1)^{7}\cdot(a+3)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 58604765625 \) = \(3^{7}\cdot5^{7}\cdot7^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{718925824}{6328125} a - \frac{64507904}{1265625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.61144419281788467609571732128800487399 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 1.22288838563576935219143464257600974798 \)
Global period: $\Omega(E/K)$ \( 6.2538141752945632166213468642480928290 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 98 \)  =  \(7\cdot7\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(7\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 3.3377372159111736941815439606868548477 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 3.337737216 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 6.253814 \cdot 1.222888 \cdot 98 } { {7^2 \cdot 4.582576} } \approx 3.337737216$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-a+2)\) \(3\) \(7\) \(I_{7}\) Split multiplicative \(-1\) \(1\) \(7\) \(7\)
\((-a+1)\) \(5\) \(7\) \(I_{7}\) Split multiplicative \(-1\) \(1\) \(7\) \(7\)
\((a+3)\) \(7\) \(2\) \(III\) Additive \(-1\) \(2\) \(3\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 735.1-i consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.