Properties

Label 2.2.24.1-375.2-a1
Base field \(\Q(\sqrt{6}) \)
Conductor norm \( 375 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{6}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 6 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-6, 0, 1]))
 
gp: K = nfinit(Polrev([-6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+a{x}^{2}+\left(a-4\right){x}+a-1\)
sage: E = EllipticCurve([K([1,1]),K([0,1]),K([1,0]),K([-4,1]),K([-1,1])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,1]),Polrev([1,0]),Polrev([-4,1]),Polrev([-1,1])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,1],K![1,0],K![-4,1],K![-1,1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-a + 3 : a - 2 : 1\right)$$1.0406251446890188613720667604315965524$$\infty$
$\left(-a - 3 : 2 a + 4 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((-10a-15)\) = \((a+3)\cdot(-a-1)\cdot(-a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 375 \) = \(3\cdot5\cdot5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-5350a-5025$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-5350a-5025)\) = \((a+3)\cdot(-a-1)^{2}\cdot(-a+1)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( -146484375 \) = \(-3\cdot5^{2}\cdot5^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{208058}{75} a + \frac{33551}{25} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 1.0406251446890188613720667604315965524 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 2.0812502893780377227441335208631931048 \)
Global period: $\Omega(E/K)$ \( 10.532504238390417681239044847045936315 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 4 \)  =  \(1\cdot2\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 4.4745599687873097608045487742521184675 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 4.474559969 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 10.532504 \cdot 2.081250 \cdot 4 } { {2^2 \cdot 4.898979} } \approx 4.474559969$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a+3)\) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-a-1)\) \(5\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((-a+1)\) \(5\) \(2\) \(III^{*}\) Additive \(-1\) \(2\) \(9\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 375.2-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.