Properties

Label 2.2.33.1-539.1-e1
Base field Q(33)\Q(\sqrt{33})
Conductor norm 539 539
CM no
Base change yes
Q-curve yes
Torsion order 2 2
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(33)\Q(\sqrt{33})

Generator aa, with minimal polynomial x2x8 x^{2} - x - 8 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, -1, 1]))
 
gp: K = nfinit(Polrev([-8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -1, 1]);
 

Weierstrass equation

y2+xy+ay=x3ax2+(1280a+3040)x161701a383601{y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(1280a+3040\right){x}-161701a-383601
sage: E = EllipticCurve([K([1,0]),K([0,-1]),K([0,1]),K([3040,1280]),K([-383601,-161701])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,-1]),Polrev([0,1]),Polrev([3040,1280]),Polrev([-383601,-161701])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,-1],K![0,1],K![3040,1280],K![-383601,-161701]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2059a+4799:24179a1715827:1)\left(\frac{205}{9} a + \frac{479}{9} : -\frac{2417}{9} a - \frac{17158}{27} : 1\right)1.18392870230031362823287487668561061691.1839287023003136282328748766856106169\infty
(13a+30:7a15:1)\left(13 a + 30 : -7 a - 15 : 1\right)0022

Invariants

Conductor: N\frak{N} = (28a63)(-28a-63) = (4a9)(7)(-4a-9)\cdot(7)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 539 539 = 114911\cdot49
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 41503-41503
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (41503)(-41503) = (4a9)4(7)3(-4a-9)^{4}\cdot(7)^{3}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 1722499009 1722499009 = 11449311^{4}\cdot49^{3}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 465746341503 \frac{4657463}{41503}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 1.1839287023003136282328748766856106169 1.1839287023003136282328748766856106169
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 2.3678574046006272564657497533712212338 2.3678574046006272564657497533712212338
Global period: Ω(E/K)\Omega(E/K) 3.2101873408696119145423660433455397356 3.2101873408696119145423660433455397356
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 6 6  =  232\cdot3
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 1.9848158161738105597445225579762314471 1.9848158161738105597445225579762314471
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

1.984815816L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/213.2101872.3678576225.7445631.984815816\displaystyle 1.984815816 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 3.210187 \cdot 2.367857 \cdot 6 } { {2^2 \cdot 5.744563} } \approx 1.984815816

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There are 2 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(4a9)(-4a-9) 1111 22 I4I_{4} Non-split multiplicative 11 11 44 44
(7)(7) 4949 33 I3I_{3} Split multiplicative 1-1 11 33 33

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 539.1-e consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is a Q\Q-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
Q\Q 693.a2
Q\Q 847.a2