Properties

Label 2.2.337.1-12.1-c1
Base field Q(337)\Q(\sqrt{337})
Conductor norm 12 12
CM no
Base change no
Q-curve no
Torsion order 2 2
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(337)\Q(\sqrt{337})

Generator aa, with minimal polynomial x2x84 x^{2} - x - 84 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-84, -1, 1]))
 
gp: K = nfinit(Polrev([-84, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-84, -1, 1]);
 

Weierstrass equation

y2+xy=x3+(7098a+61602)x+230272a+1998480{y}^2+{x}{y}={x}^{3}+\left(7098a+61602\right){x}+230272a+1998480
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([0,0]),K([61602,7098]),K([1998480,230272])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,0]),Polrev([0,0]),Polrev([61602,7098]),Polrev([1998480,230272])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,0],K![0,0],K![61602,7098],K![1998480,230272]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(224a+1944:14532a126120:1)\left(224 a + 1944 : -14532 a - 126120 : 1\right)0.344625497742629949842681838613363671210.34462549774262994984268183861336367121\infty
(74a614:78a+618:1)\left(-\frac{7}{4} a - \frac{61}{4} : \frac{7}{8} a + \frac{61}{8} : 1\right)0022

Invariants

Conductor: N\frak{N} = (56a486)(-56a-486) = (3a+26)(3a29)(28a243)(3a+26)\cdot(3a-29)\cdot(-28a-243)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 12 12 = 2232\cdot2\cdot3
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 4002284a34734948-4002284a-34734948
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (4002284a34734948)(-4002284a-34734948) = (3a+26)2(3a29)22(28a243)3(3a+26)^{2}\cdot(3a-29)^{22}\cdot(-28a-243)^{3}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 452984832 -452984832 = 2222233-2^{2}\cdot2^{22}\cdot3^{3}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 3072738109113246208a+5384037361928311552 -\frac{3072738109}{113246208} a + \frac{53840373619}{28311552}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.34462549774262994984268183861336367121 0.34462549774262994984268183861336367121
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 0.689250995485259899685363677226727342420 0.689250995485259899685363677226727342420
Global period: Ω(E/K)\Omega(E/K) 7.1285654371801663395914728888792810179 7.1285654371801663395914728888792810179
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 132 132  =  2(211)32\cdot( 2 \cdot 11 )\cdot3
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 8.8323959934034647463095094084120494900 8.8323959934034647463095094084120494900
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

8.832395993L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/217.1285650.6892511322218.3575608.832395993\displaystyle 8.832395993 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 7.128565 \cdot 0.689251 \cdot 132 } { {2^2 \cdot 18.357560} } \approx 8.832395993

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There are 3 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(3a+26)(3a+26) 22 22 I2I_{2} Split multiplicative 1-1 11 22 22
(3a29)(3a-29) 22 2222 I22I_{22} Split multiplicative 1-1 11 2222 2222
(28a243)(-28a-243) 33 33 I3I_{3} Split multiplicative 1-1 11 33 33

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 12.1-c consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.