Generator a, with minimal polynomial
x2−10; class number 2.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-10, 0, 1]))
gp:K = nfinit(Polrev([-10, 0, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-10, 0, 1]);
y2=x3+(a−1)x2+(68a−266)x+506a−1784
sage:E = EllipticCurve([K([0,0]),K([-1,1]),K([0,0]),K([-266,68]),K([-1784,506])])
gp:E = ellinit([Polrev([0,0]),Polrev([-1,1]),Polrev([0,0]),Polrev([-266,68]),Polrev([-1784,506])], K);
magma:E := EllipticCurve([K![0,0],K![-1,1],K![0,0],K![-266,68],K![-1784,506]]);
This is not a global minimal
model: it is minimal
at all primes except (2,a).
No global minimal model exists.
sage:E.is_global_minimal_model()
Z⊕Z/2Z
P | h^(P) | Order |
(911a−979:−2713a+2750:1) | 2.4917886595952619109030459294972334088 | ∞ |
(−5a+11:0:1) | 0 | 2 |
Conductor: |
N |
= |
(−3a−15) |
= |
(3,a+1)⋅(3,a+2)2⋅(5,a) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
135 |
= |
3⋅32⋅5 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
696000a+1032000 |
Discriminant ideal:
|
(Δ)
|
= |
(696000a+1032000) |
= |
(2,a)12⋅(3,a+1)⋅(3,a+2)9⋅(5,a)6 |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Δ)
|
= |
3779136000000 |
= |
212⋅3⋅39⋅56 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
Minimal discriminant: |
Dmin |
= |
(10875a+16125) |
= |
(3,a+1)⋅(3,a+2)9⋅(5,a)6 |
Minimal discriminant norm: |
N(Dmin) |
= |
922640625 |
= |
3⋅39⋅56 |
j-invariant: |
j |
= |
37566006784a+375226222784 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
1
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
1 |
Regulator:
|
Reg(E/K) |
≈ |
2.4917886595952619109030459294972334088
|
Néron-Tate Regulator:
|
RegNT(E/K) |
≈ |
4.9835773191905238218060918589944668176
|
Global period: |
Ω(E/K) | ≈ |
3.6098533029722432540925705659458719723 |
Tamagawa product: |
∏pcp | = |
4
= 1⋅1⋅2⋅2
|
Torsion order: |
#E(K)tor | = |
2 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 2.8444660747057187919392215700267920443 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
2.844466075≈L′(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈22⋅6.3245551⋅3.609853⋅4.983577⋅4≈2.844466075
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is not semistable.
There
are 3 primes p
of bad reduction.
Primes of good reduction for the curve but which divide the
discriminant of the model above (if any) are included.
p |
N(p) |
Tamagawa number |
Kodaira symbol |
Reduction type |
Root number |
ordp(N) |
ordp(Dmin) |
ordp(den(j)) |
(2,a)
|
2
|
1
|
I0
|
Good
|
1 |
0 |
0 |
0 |
(3,a+1)
|
3
|
1
|
I1
|
Split multiplicative
|
−1 |
1 |
1 |
1 |
(3,a+2)
|
3
|
2
|
III∗
|
Additive
|
1 |
2 |
9 |
0 |
(5,a)
|
5
|
2
|
I6
|
Non-split multiplicative
|
1 |
1 |
6 |
6 |
This curve has non-trivial cyclic isogenies of degree d for d=
2, 3 and 6.
Its isogeny class
135.1-g
consists of curves linked by isogenies of
degrees dividing 6.
This elliptic curve is not a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.