Properties

Label 2.2.40.1-135.1-g4
Base field Q(10)\Q(\sqrt{10})
Conductor norm 135 135
CM no
Base change no
Q-curve no
Torsion order 2 2
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(10)\Q(\sqrt{10})

Generator aa, with minimal polynomial x210 x^{2} - 10 ; class number 22.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-10, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([-10, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-10, 0, 1]);
 

Weierstrass equation

y2=x3+(a1)x2+(68a266)x+506a1784{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(68a-266\right){x}+506a-1784
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,0]),K([-1,1]),K([0,0]),K([-266,68]),K([-1784,506])])
 
Copy content gp:E = ellinit([Polrev([0,0]),Polrev([-1,1]),Polrev([0,0]),Polrev([-266,68]),Polrev([-1784,506])], K);
 
Copy content magma:E := EllipticCurve([K![0,0],K![-1,1],K![0,0],K![-266,68],K![-1784,506]]);
 

This is not a global minimal model: it is minimal at all primes except (2,a)(2,a). No global minimal model exists.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(119a799:1327a+5027:1)\left(\frac{11}{9} a - \frac{79}{9} : -\frac{13}{27} a + \frac{50}{27} : 1\right)2.49178865959526191090304592949723340882.4917886595952619109030459294972334088\infty
(5a+11:0:1)\left(-5 a + 11 : 0 : 1\right)0022

Invariants

Conductor: N\frak{N} = (3a15)(-3a-15) = (3,a+1)(3,a+2)2(5,a)(3,a+1)\cdot(3,a+2)^{2}\cdot(5,a)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 135 135 = 33253\cdot3^{2}\cdot5
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 696000a+1032000696000a+1032000
Discriminant ideal: (Δ)(\Delta) = (696000a+1032000)(696000a+1032000) = (2,a)12(3,a+1)(3,a+2)9(5,a)6(2,a)^{12}\cdot(3,a+1)\cdot(3,a+2)^{9}\cdot(5,a)^{6}
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Δ)N(\Delta) = 3779136000000 3779136000000 = 212339562^{12}\cdot3\cdot3^{9}\cdot5^{6}
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
Minimal discriminant: Dmin\frak{D}_{\mathrm{min}} = (10875a+16125)(10875a+16125) = (3,a+1)(3,a+2)9(5,a)6(3,a+1)\cdot(3,a+2)^{9}\cdot(5,a)^{6}
Minimal discriminant norm: N(Dmin)N(\frak{D}_{\mathrm{min}}) = 922640625 922640625 = 339563\cdot3^{9}\cdot5^{6}
j-invariant: jj = 66006784375a+226222784375 \frac{66006784}{375} a + \frac{226222784}{375}
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 2.4917886595952619109030459294972334088 2.4917886595952619109030459294972334088
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 4.9835773191905238218060918589944668176 4.9835773191905238218060918589944668176
Global period: Ω(E/K)\Omega(E/K) 3.6098533029722432540925705659458719723 3.6098533029722432540925705659458719723
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 4 4  =  11221\cdot1\cdot2\cdot2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 2.8444660747057187919392215700267920443 2.8444660747057187919392215700267920443
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

2.844466075L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/213.6098534.9835774226.3245552.844466075\begin{aligned}2.844466075 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 3.609853 \cdot 4.983577 \cdot 4 } { {2^2 \cdot 6.324555} } \\ & \approx 2.844466075 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes p\frak{p} of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(2,a)(2,a) 22 11 I0I_0 Good 11 00 00 00
(3,a+1)(3,a+1) 33 11 I1I_{1} Split multiplicative 1-1 11 11 11
(3,a+2)(3,a+2) 33 22 IIIIII^{*} Additive 11 22 99 00
(5,a)(5,a) 55 22 I6I_{6} Non-split multiplicative 11 11 66 66

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B
33 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 135.1-g consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.