Learn more

Refine search


Results (1-50 of 1200 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1.1-a1 1.1-a Q(14)\Q(\sqrt{14}) 1 1 0 Z/2Z\Z/2\Z 7-7 N(U(1))N(\mathrm{U}(1)) 11 26.1638590526.16385905 0.874073183 3375 -3375 [a+1 \bigl[a + 1 , a a , 1 1 , 2a+10 2 a + 10 , 2a+7] 2 a + 7\bigr] y2+(a+1)xy+y=x3+ax2+(2a+10)x+2a+7{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+a{x}^{2}+\left(2a+10\right){x}+2a+7
1.1-a2 1.1-a Q(14)\Q(\sqrt{14}) 1 1 0 Z/2Z\Z/2\Z 7-7 N(U(1))N(\mathrm{U}(1)) 11 26.1638590526.16385905 0.874073183 3375 -3375 [a+1 \bigl[a + 1 , a a , a+1 a + 1 , 4a+3 4 a + 3 , a+21] a + 21\bigr] y2+(a+1)xy+(a+1)y=x3+ax2+(4a+3)x+a+21{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(4a+3\right){x}+a+21
1.1-a3 1.1-a Q(14)\Q(\sqrt{14}) 1 1 0 Z/2Z\Z/2\Z 28-28 N(U(1))N(\mathrm{U}(1)) 11 26.1638590526.16385905 0.874073183 16581375 16581375 [a+1 \bigl[a + 1 , a a , 1 1 , 18a65 -18 a - 65 , 41a+153] 41 a + 153\bigr] y2+(a+1)xy+y=x3+ax2+(18a65)x+41a+153{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-18a-65\right){x}+41a+153
1.1-a4 1.1-a Q(14)\Q(\sqrt{14}) 1 1 0 Z/2Z\Z/2\Z 28-28 N(U(1))N(\mathrm{U}(1)) 11 26.1638590526.16385905 0.874073183 16581375 16581375 [a+1 \bigl[a + 1 , a a , a+1 a + 1 , 24a72 24 a - 72 , 113a+447] -113 a + 447\bigr] y2+(a+1)xy+(a+1)y=x3+ax2+(24a72)x113a+447{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(24a-72\right){x}-113a+447
5.1-a1 5.1-a Q(14)\Q(\sqrt{14}) 5 5 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 11.7066321811.70663218 1.564364528 5346843211953125a+36019136431953125 \frac{534684321}{1953125} a + \frac{3601913643}{1953125} [1 \bigl[1 , 1 -1 , a a , 15a54 -15 a - 54 , 33a127] -33 a - 127\bigr] y2+xy+ay=x3x2+(15a54)x33a127{y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-15a-54\right){x}-33a-127
5.1-b1 5.1-b Q(14)\Q(\sqrt{14}) 5 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0531826670.053182667 11.3567951811.35679518 1.452795207 5346843211953125a+36019136431953125 \frac{534684321}{1953125} a + \frac{3601913643}{1953125} [1 \bigl[1 , 1 -1 , 0 0 , 8a+30 -8 a + 30 , 27a101] 27 a - 101\bigr] y2+xy=x3x2+(8a+30)x+27a101{y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-8a+30\right){x}+27a-101
5.2-a1 5.2-a Q(14)\Q(\sqrt{14}) 5 5 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 11.7066321811.70663218 1.564364528 5346843211953125a+36019136431953125 -\frac{534684321}{1953125} a + \frac{3601913643}{1953125} [1 \bigl[1 , 1 -1 , a a , 14a54 14 a - 54 , 33a127] 33 a - 127\bigr] y2+xy+ay=x3x2+(14a54)x+33a127{y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(14a-54\right){x}+33a-127
5.2-b1 5.2-b Q(14)\Q(\sqrt{14}) 5 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0531826670.053182667 11.3567951811.35679518 1.452795207 5346843211953125a+36019136431953125 -\frac{534684321}{1953125} a + \frac{3601913643}{1953125} [1 \bigl[1 , 1 -1 , 0 0 , 8a+30 8 a + 30 , 27a101] -27 a - 101\bigr] y2+xy=x3x2+(8a+30)x27a101{y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(8a+30\right){x}-27a-101
10.1-a1 10.1-a Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 36.4310450836.43104508 1.081845150 568920a+2162720 \frac{5689}{20} a + \frac{21627}{20} [1 \bigl[1 , 0 0 , 1 1 , 2a+7 -2 a + 7 , 30a+112] -30 a + 112\bigr] y2+xy+y=x3+(2a+7)x30a+112{y}^2+{x}{y}+{y}={x}^{3}+\left(-2a+7\right){x}-30a+112
10.1-a2 10.1-a Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 4.0478938974.047893897 1.081845150 182588291698000a+683181457778000 \frac{18258829169}{8000} a + \frac{68318145777}{8000} [1 \bigl[1 , 0 0 , 1 1 , 18a68 18 a - 68 , 814a3046] 814 a - 3046\bigr] y2+xy+y=x3+(18a68)x+814a3046{y}^2+{x}{y}+{y}={x}^{3}+\left(18a-68\right){x}+814a-3046
10.1-b1 10.1-b Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 0 Z/5Z\Z/5\Z SU(2)\mathrm{SU}(2) 11 8.2840264128.284026412 2.213999186 73603923100000a+358833109100000 \frac{73603923}{100000} a + \frac{358833109}{100000} [a+1 \bigl[a + 1 , a1 a - 1 , a+1 a + 1 , 27a102 -27 a - 102 , 216a811] -216 a - 811\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(27a102)x216a811{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-27a-102\right){x}-216a-811
10.1-b2 10.1-b Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.3313610560.331361056 2.213999186 711467655441806250310a+2662068208119956998910 \frac{7114676554418062503}{10} a + \frac{26620682081199569989}{10} [a+1 \bigl[a + 1 , a1 a - 1 , a+1 a + 1 , 17217a64432 -17217 a - 64432 , 2427316a9082191] -2427316 a - 9082191\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(17217a64432)x2427316a9082191{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-17217a-64432\right){x}-2427316a-9082191
10.1-c1 10.1-c Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0544004940.054400494 14.1631347314.16313473 2.059198521 73603923100000a+358833109100000 \frac{73603923}{100000} a + \frac{358833109}{100000} [a+1 \bigl[a + 1 , 0 0 , 0 0 , 5a+29 -5 a + 29 , 20a+81] -20 a + 81\bigr] y2+(a+1)xy=x3+(5a+29)x20a+81{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-5a+29\right){x}-20a+81
10.1-c2 10.1-c Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.2720024730.272002473 14.1631347314.16313473 2.059198521 711467655441806250310a+2662068208119956998910 \frac{7114676554418062503}{10} a + \frac{26620682081199569989}{10} [a+1 \bigl[a + 1 , 0 0 , 0 0 , 1285a4941 1285 a - 4941 , 48650a+182431] -48650 a + 182431\bigr] y2+(a+1)xy=x3+(1285a4941)x48650a+182431{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(1285a-4941\right){x}-48650a+182431
10.1-d1 10.1-d Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.1150498670.115049867 20.1954884420.19548844 1.241956719 568920a+2162720 \frac{5689}{20} a + \frac{21627}{20} [1 \bigl[1 , a1 -a - 1 , 0 0 , 3 3 , 1] 1\bigr] y2+xy=x3+(a1)x2+3x+1{y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+3{x}+1
10.1-d2 10.1-d Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0383499550.038349955 20.1954884420.19548844 1.241956719 182588291698000a+683181457778000 \frac{18258829169}{8000} a + \frac{68318145777}{8000} [1 \bigl[1 , a1 -a - 1 , 0 0 , 20a72 -20 a - 72 , 128a+480] 128 a + 480\bigr] y2+xy=x3+(a1)x2+(20a72)x+128a+480{y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-20a-72\right){x}+128a+480
10.2-a1 10.2-a Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 4.0478938974.047893897 1.081845150 182588291698000a+683181457778000 -\frac{18258829169}{8000} a + \frac{68318145777}{8000} [1 \bigl[1 , 0 0 , 1 1 , 18a68 -18 a - 68 , 814a3046] -814 a - 3046\bigr] y2+xy+y=x3+(18a68)x814a3046{y}^2+{x}{y}+{y}={x}^{3}+\left(-18a-68\right){x}-814a-3046
10.2-a2 10.2-a Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 36.4310450836.43104508 1.081845150 568920a+2162720 -\frac{5689}{20} a + \frac{21627}{20} [1 \bigl[1 , 0 0 , 1 1 , 2a+7 2 a + 7 , 30a+112] 30 a + 112\bigr] y2+xy+y=x3+(2a+7)x+30a+112{y}^2+{x}{y}+{y}={x}^{3}+\left(2a+7\right){x}+30a+112
10.2-b1 10.2-b Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.3313610560.331361056 2.213999186 711467655441806250310a+2662068208119956998910 -\frac{7114676554418062503}{10} a + \frac{26620682081199569989}{10} [a+1 \bigl[a + 1 , a1 a - 1 , 1 1 , 17221a64425 17221 a - 64425 , 2362884a8841125] 2362884 a - 8841125\bigr] y2+(a+1)xy+y=x3+(a1)x2+(17221a64425)x+2362884a8841125{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(17221a-64425\right){x}+2362884a-8841125
10.2-b2 10.2-b Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 0 Z/5Z\Z/5\Z SU(2)\mathrm{SU}(2) 11 8.2840264128.284026412 2.213999186 73603923100000a+358833109100000 -\frac{73603923}{100000} a + \frac{358833109}{100000} [a+1 \bigl[a + 1 , a1 a - 1 , 1 1 , 31a95 31 a - 95 , 114a405] 114 a - 405\bigr] y2+(a+1)xy+y=x3+(a1)x2+(31a95)x+114a405{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(31a-95\right){x}+114a-405
10.2-c1 10.2-c Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.2720024730.272002473 14.1631347314.16313473 2.059198521 711467655441806250310a+2662068208119956998910 -\frac{7114676554418062503}{10} a + \frac{26620682081199569989}{10} [a+1 \bigl[a + 1 , a -a , 0 0 , 1285a4941 -1285 a - 4941 , 48650a+182431] 48650 a + 182431\bigr] y2+(a+1)xy=x3ax2+(1285a4941)x+48650a+182431{y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-1285a-4941\right){x}+48650a+182431
10.2-c2 10.2-c Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0544004940.054400494 14.1631347314.16313473 2.059198521 73603923100000a+358833109100000 -\frac{73603923}{100000} a + \frac{358833109}{100000} [a+1 \bigl[a + 1 , a -a , 0 0 , 5a+29 5 a + 29 , 20a+81] 20 a + 81\bigr] y2+(a+1)xy=x3ax2+(5a+29)x+20a+81{y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(5a+29\right){x}+20a+81
10.2-d1 10.2-d Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0383499550.038349955 20.1954884420.19548844 1.241956719 182588291698000a+683181457778000 -\frac{18258829169}{8000} a + \frac{68318145777}{8000} [1 \bigl[1 , a1 a - 1 , 0 0 , 20a72 20 a - 72 , 128a+480] -128 a + 480\bigr] y2+xy=x3+(a1)x2+(20a72)x128a+480{y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(20a-72\right){x}-128a+480
10.2-d2 10.2-d Q(14)\Q(\sqrt{14}) 25 2 \cdot 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.1150498670.115049867 20.1954884420.19548844 1.241956719 568920a+2162720 -\frac{5689}{20} a + \frac{21627}{20} [1 \bigl[1 , a1 a - 1 , 0 0 , 3 3 , 1] 1\bigr] y2+xy=x3+(a1)x2+3x+1{y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+3{x}+1
14.1-a1 14.1-a Q(14)\Q(\sqrt{14}) 27 2 \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 12.6305106712.63051067 0.4361906600.436190660 1.472425245 5483477316251835008 -\frac{548347731625}{1835008} [1 \bigl[1 , 0 0 , 1 1 , 171 -171 , 874] -874\bigr] y2+xy+y=x3171x874{y}^2+{x}{y}+{y}={x}^{3}-171{x}-874
14.1-a2 14.1-a Q(14)\Q(\sqrt{14}) 27 2 \cdot 7 11 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 1.4033900751.403390075 35.3314435235.33144352 1.472425245 1562528 -\frac{15625}{28} [1 \bigl[1 , 0 0 , 1 1 , 1 -1 , 0] 0\bigr] y2+xy+y=x3x{y}^2+{x}{y}+{y}={x}^{3}-{x}
14.1-a3 14.1-a Q(14)\Q(\sqrt{14}) 27 2 \cdot 7 11 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 4.2101702254.210170225 3.9257159463.925715946 1.472425245 993837521952 \frac{9938375}{21952} [1 \bigl[1 , 0 0 , 1 1 , 4 4 , 6] -6\bigr] y2+xy+y=x3+4x6{y}^2+{x}{y}+{y}={x}^{3}+4{x}-6
14.1-a4 14.1-a Q(14)\Q(\sqrt{14}) 27 2 \cdot 7 11 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 2.1050851122.105085112 3.9257159463.925715946 1.472425245 4956477625941192 \frac{4956477625}{941192} [1 \bigl[1 , 0 0 , 1 1 , 36 -36 , 70] -70\bigr] y2+xy+y=x336x70{y}^2+{x}{y}+{y}={x}^{3}-36{x}-70
14.1-a5 14.1-a Q(14)\Q(\sqrt{14}) 27 2 \cdot 7 11 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 0.7016950370.701695037 35.3314435235.33144352 1.472425245 12878762598 \frac{128787625}{98} [1 \bigl[1 , 0 0 , 1 1 , 11 -11 , 12] 12\bigr] y2+xy+y=x311x+12{y}^2+{x}{y}+{y}={x}^{3}-11{x}+12
14.1-a6 14.1-a Q(14)\Q(\sqrt{14}) 27 2 \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 6.3152553376.315255337 0.4361906600.436190660 1.472425245 225143905569962525088 \frac{2251439055699625}{25088} [1 \bigl[1 , 0 0 , 1 1 , 2731 -2731 , 55146] -55146\bigr] y2+xy+y=x32731x55146{y}^2+{x}{y}+{y}={x}^{3}-2731{x}-55146
14.1-b1 14.1-b Q(14)\Q(\sqrt{14}) 27 2 \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.0277081057.027708105 0.939116998 5483477316251835008 -\frac{548347731625}{1835008} [1 \bigl[1 , a1 a - 1 , 0 0 , 20462a76559 20462 a - 76559 , 3121544a+11679749] -3121544 a + 11679749\bigr] y2+xy=x3+(a1)x2+(20462a76559)x3121544a+11679749{y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(20462a-76559\right){x}-3121544a+11679749
14.1-b2 14.1-b Q(14)\Q(\sqrt{14}) 27 2 \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.0277081057.027708105 0.939116998 1562528 -\frac{15625}{28} [1 \bigl[1 , a1 a - 1 , 0 0 , 62a229 62 a - 229 , 960a3591] 960 a - 3591\bigr] y2+xy=x3+(a1)x2+(62a229)x+960a3591{y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(62a-229\right){x}+960a-3591
14.1-b3 14.1-b Q(14)\Q(\sqrt{14}) 27 2 \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.0277081057.027708105 0.939116998 993837521952 \frac{9938375}{21952} [1 \bigl[1 , a1 a - 1 , 0 0 , 538a+2016 -538 a + 2016 , 21216a+79384] -21216 a + 79384\bigr] y2+xy=x3+(a1)x2+(538a+2016)x21216a+79384{y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-538a+2016\right){x}-21216a+79384
14.1-b4 14.1-b Q(14)\Q(\sqrt{14}) 27 2 \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.0277081057.027708105 0.939116998 4956477625941192 \frac{4956477625}{941192} [1 \bigl[1 , a1 a - 1 , 0 0 , 4262a15944 4262 a - 15944 , 246560a+922544] -246560 a + 922544\bigr] y2+xy=x3+(a1)x2+(4262a15944)x246560a+922544{y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(4262a-15944\right){x}-246560a+922544
14.1-b5 14.1-b Q(14)\Q(\sqrt{14}) 27 2 \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.0277081057.027708105 0.939116998 12878762598 \frac{128787625}{98} [1 \bigl[1 , a1 a - 1 , 0 0 , 1262a4719 1262 a - 4719 , 45312a169541] 45312 a - 169541\bigr] y2+xy=x3+(a1)x2+(1262a4719)x+45312a169541{y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1262a-4719\right){x}+45312a-169541
14.1-b6 14.1-b Q(14)\Q(\sqrt{14}) 27 2 \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.0277081057.027708105 0.939116998 225143905569962525088 \frac{2251439055699625}{25088} [1 \bigl[1 , a1 a - 1 , 0 0 , 327662a1225999 327662 a - 1225999 , 197976456a+740760069] -197976456 a + 740760069\bigr] y2+xy=x3+(a1)x2+(327662a1225999)x197976456a+740760069{y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(327662a-1225999\right){x}-197976456a+740760069
16.1-a1 16.1-a Q(14)\Q(\sqrt{14}) 24 2^{4} 0 Z/2Z\Z/2\Z 7-7 N(U(1))N(\mathrm{U}(1)) 11 13.0819295213.08192952 1.748146366 3375 -3375 [a \bigl[a , 1 1 , a a , 5a19 -5 a - 19 , 7a+26] 7 a + 26\bigr] y2+axy+ay=x3+x2+(5a19)x+7a+26{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-5a-19\right){x}+7a+26
16.1-a2 16.1-a Q(14)\Q(\sqrt{14}) 24 2^{4} 0 Z/2Z\Z/2\Z 7-7 N(U(1))N(\mathrm{U}(1)) 11 13.0819295213.08192952 1.748146366 3375 -3375 [a \bigl[a , 1 1 , a a , 5a19 5 a - 19 , 7a+26] -7 a + 26\bigr] y2+axy+ay=x3+x2+(5a19)x7a+26{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(5a-19\right){x}-7a+26
16.1-a3 16.1-a Q(14)\Q(\sqrt{14}) 24 2^{4} 0 Z/2Z\Z/2\Z 28-28 N(U(1))N(\mathrm{U}(1)) 11 13.0819295213.08192952 1.748146366 16581375 16581375 [a \bigl[a , 1 1 , a a , 85a319 -85 a - 319 , 699a+2614] 699 a + 2614\bigr] y2+axy+ay=x3+x2+(85a319)x+699a+2614{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-85a-319\right){x}+699a+2614
16.1-a4 16.1-a Q(14)\Q(\sqrt{14}) 24 2^{4} 0 Z/2Z\Z/2\Z 28-28 N(U(1))N(\mathrm{U}(1)) 11 13.0819295213.08192952 1.748146366 16581375 16581375 [a \bigl[a , 1 1 , a a , 85a319 85 a - 319 , 699a+2614] -699 a + 2614\bigr] y2+axy+ay=x3+x2+(85a319)x699a+2614{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(85a-319\right){x}-699a+2614
18.1-a1 18.1-a Q(14)\Q(\sqrt{14}) 232 2 \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.5018801778.501880177 1.136111527 49131296 \frac{4913}{1296} [a+1 \bigl[a + 1 , a1 -a - 1 , a a , 2 2 , 38a142] -38 a - 142\bigr] y2+(a+1)xy+ay=x3+(a1)x2+2x38a142{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+2{x}-38a-142
18.1-a2 18.1-a Q(14)\Q(\sqrt{14}) 232 2 \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.5018801778.501880177 1.136111527 83856180726244 \frac{838561807}{26244} [a+1 \bigl[a + 1 , a1 -a - 1 , a a , 80a298 -80 a - 298 , 738a2762] -738 a - 2762\bigr] y2+(a+1)xy+ay=x3+(a1)x2+(80a298)x738a2762{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-80a-298\right){x}-738a-2762
18.1-b1 18.1-b Q(14)\Q(\sqrt{14}) 232 2 \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.5018801778.501880177 1.136111527 49131296 \frac{4913}{1296} [a+1 \bigl[a + 1 , 1 -1 , a a , a+2 -a + 2 , 38a142] 38 a - 142\bigr] y2+(a+1)xy+ay=x3x2+(a+2)x+38a142{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-a+2\right){x}+38a-142
18.1-b2 18.1-b Q(14)\Q(\sqrt{14}) 232 2 \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.5018801778.501880177 1.136111527 83856180726244 \frac{838561807}{26244} [a+1 \bigl[a + 1 , 1 -1 , a a , 79a298 79 a - 298 , 738a2762] 738 a - 2762\bigr] y2+(a+1)xy+ay=x3x2+(79a298)x+738a2762{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(79a-298\right){x}+738a-2762
20.1-a1 20.1-a Q(14)\Q(\sqrt{14}) 225 2^{2} \cdot 5 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 13.9259282413.92592824 1.860930439 32365a+121085 \frac{3236}{5} a + \frac{12108}{5} [a \bigl[a , a+1 -a + 1 , 0 0 , 13a26 -13 a - 26 , 32a99] -32 a - 99\bigr] y2+axy=x3+(a+1)x2+(13a26)x32a99{y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-13a-26\right){x}-32a-99
20.1-b1 20.1-b Q(14)\Q(\sqrt{14}) 225 2^{2} \cdot 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.2230193420.223019342 31.9766651831.97666518 1.905950784 32365a+121085 \frac{3236}{5} a + \frac{12108}{5} [a \bigl[a , 1 -1 , 0 0 , 2 2 , 2a+8] -2 a + 8\bigr] y2+axy=x3x2+2x2a+8{y}^2+a{x}{y}={x}^{3}-{x}^{2}+2{x}-2a+8
20.2-a1 20.2-a Q(14)\Q(\sqrt{14}) 225 2^{2} \cdot 5 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 13.9259282413.92592824 1.860930439 32365a+121085 -\frac{3236}{5} a + \frac{12108}{5} [a \bigl[a , a+1 a + 1 , 0 0 , 13a26 13 a - 26 , 32a99] 32 a - 99\bigr] y2+axy=x3+(a+1)x2+(13a26)x+32a99{y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(13a-26\right){x}+32a-99
20.2-b1 20.2-b Q(14)\Q(\sqrt{14}) 225 2^{2} \cdot 5 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.2230193420.223019342 31.9766651831.97666518 1.905950784 32365a+121085 -\frac{3236}{5} a + \frac{12108}{5} [a \bigl[a , 1 -1 , 0 0 , 2 2 , 2a+8] 2 a + 8\bigr] y2+axy=x3x2+2x+2a+8{y}^2+a{x}{y}={x}^{3}-{x}^{2}+2{x}+2a+8
22.1-a1 22.1-a Q(14)\Q(\sqrt{14}) 211 2 \cdot 11 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3506940130.350694013 18.0071373718.00713737 1.687753482 69372345242a519137881484 \frac{69372345}{242} a - \frac{519137881}{484} [a+1 \bigl[a + 1 , a -a , a+1 a + 1 , 28a98 -28 a - 98 , 2405a8994] -2405 a - 8994\bigr] y2+(a+1)xy+(a+1)y=x3ax2+(28a98)x2405a8994{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-28a-98\right){x}-2405a-8994
22.1-a2 22.1-a Q(14)\Q(\sqrt{14}) 211 2 \cdot 11 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.7013880270.701388027 18.0071373718.00713737 1.687753482 1353823944707522a+5065545588774122 -\frac{13538239447075}{22} a + \frac{50655455887741}{22} [a+1 \bigl[a + 1 , a -a , a+1 a + 1 , 1538a5748 -1538 a - 5748 , 63797a238702] -63797 a - 238702\bigr] y2+(a+1)xy+(a+1)y=x3ax2+(1538a5748)x63797a238702{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-1538a-5748\right){x}-63797a-238702
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.