1.1-a1
1.1-a
4 4 4
14 14 1 4
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1.1
1 1 1
1 1 1
0.66870 0.66870 0 . 6 6 8 7 0
none \textsf{none} none
0
Z / 2 Z \Z/2\Z Z / 2 Z
potential \textsf{potential} potential
− 7 -7 − 7
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
1 1 1
1 1 1
1 1 1
26.16385905 26.16385905 2 6 . 1 6 3 8 5 9 0 5
0.874073183
− 3375 -3375 − 3 3 7 5
[ a + 1 \bigl[a + 1 [ a + 1 , a a a , 1 1 1 , 2 a + 10 2 a + 10 2 a + 1 0 , 2 a + 7 ] 2 a + 7\bigr] 2 a + 7 ]
y 2 + ( a + 1 ) x y + y = x 3 + a x 2 + ( 2 a + 10 ) x + 2 a + 7 {y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+a{x}^{2}+\left(2a+10\right){x}+2a+7 y 2 + ( a + 1 ) x y + y = x 3 + a x 2 + ( 2 a + 1 0 ) x + 2 a + 7
1.1-a2
1.1-a
4 4 4
14 14 1 4
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1.1
1 1 1
1 1 1
0.66870 0.66870 0 . 6 6 8 7 0
none \textsf{none} none
0
Z / 2 Z \Z/2\Z Z / 2 Z
potential \textsf{potential} potential
− 7 -7 − 7
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
1 1 1
1 1 1
1 1 1
26.16385905 26.16385905 2 6 . 1 6 3 8 5 9 0 5
0.874073183
− 3375 -3375 − 3 3 7 5
[ a + 1 \bigl[a + 1 [ a + 1 , a a a , a + 1 a + 1 a + 1 , 4 a + 3 4 a + 3 4 a + 3 , a + 21 ] a + 21\bigr] a + 2 1 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + a x 2 + ( 4 a + 3 ) x + a + 21 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(4a+3\right){x}+a+21 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + a x 2 + ( 4 a + 3 ) x + a + 2 1
1.1-a3
1.1-a
4 4 4
14 14 1 4
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1.1
1 1 1
1 1 1
0.66870 0.66870 0 . 6 6 8 7 0
none \textsf{none} none
0
Z / 2 Z \Z/2\Z Z / 2 Z
potential \textsf{potential} potential
− 28 -28 − 2 8
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
1 1 1
1 1 1
1 1 1
26.16385905 26.16385905 2 6 . 1 6 3 8 5 9 0 5
0.874073183
16581375 16581375 1 6 5 8 1 3 7 5
[ a + 1 \bigl[a + 1 [ a + 1 , a a a , 1 1 1 , − 18 a − 65 -18 a - 65 − 1 8 a − 6 5 , 41 a + 153 ] 41 a + 153\bigr] 4 1 a + 1 5 3 ]
y 2 + ( a + 1 ) x y + y = x 3 + a x 2 + ( − 18 a − 65 ) x + 41 a + 153 {y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-18a-65\right){x}+41a+153 y 2 + ( a + 1 ) x y + y = x 3 + a x 2 + ( − 1 8 a − 6 5 ) x + 4 1 a + 1 5 3
1.1-a4
1.1-a
4 4 4
14 14 1 4
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
1.1
1 1 1
1 1 1
0.66870 0.66870 0 . 6 6 8 7 0
none \textsf{none} none
0
Z / 2 Z \Z/2\Z Z / 2 Z
potential \textsf{potential} potential
− 28 -28 − 2 8
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
1 1 1
1 1 1
1 1 1
26.16385905 26.16385905 2 6 . 1 6 3 8 5 9 0 5
0.874073183
16581375 16581375 1 6 5 8 1 3 7 5
[ a + 1 \bigl[a + 1 [ a + 1 , a a a , a + 1 a + 1 a + 1 , 24 a − 72 24 a - 72 2 4 a − 7 2 , − 113 a + 447 ] -113 a + 447\bigr] − 1 1 3 a + 4 4 7 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + a x 2 + ( 24 a − 72 ) x − 113 a + 447 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(24a-72\right){x}-113a+447 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + a x 2 + ( 2 4 a − 7 2 ) x − 1 1 3 a + 4 4 7
5.1-a1
5.1-a
1 1 1
1 1 1
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
5.1
5 5 5
− 5 9 - 5^{9} − 5 9
0.99994 0.99994 0 . 9 9 9 9 4
( − a + 3 ) (-a+3) ( − a + 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3Nn
1 1 1
1 1 1
1 1 1
11.70663218 11.70663218 1 1 . 7 0 6 6 3 2 1 8
1.564364528
534684321 1953125 a + 3601913643 1953125 \frac{534684321}{1953125} a + \frac{3601913643}{1953125} 1 9 5 3 1 2 5 5 3 4 6 8 4 3 2 1 a + 1 9 5 3 1 2 5 3 6 0 1 9 1 3 6 4 3
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a a a , − 15 a − 54 -15 a - 54 − 1 5 a − 5 4 , − 33 a − 127 ] -33 a - 127\bigr] − 3 3 a − 1 2 7 ]
y 2 + x y + a y = x 3 − x 2 + ( − 15 a − 54 ) x − 33 a − 127 {y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-15a-54\right){x}-33a-127 y 2 + x y + a y = x 3 − x 2 + ( − 1 5 a − 5 4 ) x − 3 3 a − 1 2 7
5.1-b1
5.1-b
1 1 1
1 1 1
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
5.1
5 5 5
− 5 9 - 5^{9} − 5 9
0.99994 0.99994 0 . 9 9 9 9 4
( − a + 3 ) (-a+3) ( − a + 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3Nn
1 1 1
3 2 3^{2} 3 2
0.053182667 0.053182667 0 . 0 5 3 1 8 2 6 6 7
11.35679518 11.35679518 1 1 . 3 5 6 7 9 5 1 8
1.452795207
534684321 1953125 a + 3601913643 1953125 \frac{534684321}{1953125} a + \frac{3601913643}{1953125} 1 9 5 3 1 2 5 5 3 4 6 8 4 3 2 1 a + 1 9 5 3 1 2 5 3 6 0 1 9 1 3 6 4 3
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 0 0 0 , − 8 a + 30 -8 a + 30 − 8 a + 3 0 , 27 a − 101 ] 27 a - 101\bigr] 2 7 a − 1 0 1 ]
y 2 + x y = x 3 − x 2 + ( − 8 a + 30 ) x + 27 a − 101 {y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-8a+30\right){x}+27a-101 y 2 + x y = x 3 − x 2 + ( − 8 a + 3 0 ) x + 2 7 a − 1 0 1
5.2-a1
5.2-a
1 1 1
1 1 1
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
5.2
5 5 5
− 5 9 - 5^{9} − 5 9
0.99994 0.99994 0 . 9 9 9 9 4
( − a − 3 ) (-a-3) ( − a − 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3Nn
1 1 1
1 1 1
1 1 1
11.70663218 11.70663218 1 1 . 7 0 6 6 3 2 1 8
1.564364528
− 534684321 1953125 a + 3601913643 1953125 -\frac{534684321}{1953125} a + \frac{3601913643}{1953125} − 1 9 5 3 1 2 5 5 3 4 6 8 4 3 2 1 a + 1 9 5 3 1 2 5 3 6 0 1 9 1 3 6 4 3
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , a a a , 14 a − 54 14 a - 54 1 4 a − 5 4 , 33 a − 127 ] 33 a - 127\bigr] 3 3 a − 1 2 7 ]
y 2 + x y + a y = x 3 − x 2 + ( 14 a − 54 ) x + 33 a − 127 {y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(14a-54\right){x}+33a-127 y 2 + x y + a y = x 3 − x 2 + ( 1 4 a − 5 4 ) x + 3 3 a − 1 2 7
5.2-b1
5.2-b
1 1 1
1 1 1
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
5.2
5 5 5
− 5 9 - 5^{9} − 5 9
0.99994 0.99994 0 . 9 9 9 9 4
( − a − 3 ) (-a-3) ( − a − 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3Nn
1 1 1
3 2 3^{2} 3 2
0.053182667 0.053182667 0 . 0 5 3 1 8 2 6 6 7
11.35679518 11.35679518 1 1 . 3 5 6 7 9 5 1 8
1.452795207
− 534684321 1953125 a + 3601913643 1953125 -\frac{534684321}{1953125} a + \frac{3601913643}{1953125} − 1 9 5 3 1 2 5 5 3 4 6 8 4 3 2 1 a + 1 9 5 3 1 2 5 3 6 0 1 9 1 3 6 4 3
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 0 0 0 , 8 a + 30 8 a + 30 8 a + 3 0 , − 27 a − 101 ] -27 a - 101\bigr] − 2 7 a − 1 0 1 ]
y 2 + x y = x 3 − x 2 + ( 8 a + 30 ) x − 27 a − 101 {y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(8a+30\right){x}-27a-101 y 2 + x y = x 3 − x 2 + ( 8 a + 3 0 ) x − 2 7 a − 1 0 1
10.1-a1
10.1-a
2 2 2
3 3 3
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 4 ⋅ 5 - 2^{4} \cdot 5 − 2 4 ⋅ 5
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a + 3 ) (-a+4), (-a+3) ( − a + 4 ) , ( − a + 3 )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3B.1.1
1 1 1
2 2 2
1 1 1
36.43104508 36.43104508 3 6 . 4 3 1 0 4 5 0 8
1.081845150
5689 20 a + 21627 20 \frac{5689}{20} a + \frac{21627}{20} 2 0 5 6 8 9 a + 2 0 2 1 6 2 7
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 2 a + 7 -2 a + 7 − 2 a + 7 , − 30 a + 112 ] -30 a + 112\bigr] − 3 0 a + 1 1 2 ]
y 2 + x y + y = x 3 + ( − 2 a + 7 ) x − 30 a + 112 {y}^2+{x}{y}+{y}={x}^{3}+\left(-2a+7\right){x}-30a+112 y 2 + x y + y = x 3 + ( − 2 a + 7 ) x − 3 0 a + 1 1 2
10.1-a2
10.1-a
2 2 2
3 3 3
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 12 ⋅ 5 3 - 2^{12} \cdot 5^{3} − 2 1 2 ⋅ 5 3
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a + 3 ) (-a+4), (-a+3) ( − a + 4 ) , ( − a + 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3B.1.2
1 1 1
2 2 2
1 1 1
4.047893897 4.047893897 4 . 0 4 7 8 9 3 8 9 7
1.081845150
18258829169 8000 a + 68318145777 8000 \frac{18258829169}{8000} a + \frac{68318145777}{8000} 8 0 0 0 1 8 2 5 8 8 2 9 1 6 9 a + 8 0 0 0 6 8 3 1 8 1 4 5 7 7 7
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , 18 a − 68 18 a - 68 1 8 a − 6 8 , 814 a − 3046 ] 814 a - 3046\bigr] 8 1 4 a − 3 0 4 6 ]
y 2 + x y + y = x 3 + ( 18 a − 68 ) x + 814 a − 3046 {y}^2+{x}{y}+{y}={x}^{3}+\left(18a-68\right){x}+814a-3046 y 2 + x y + y = x 3 + ( 1 8 a − 6 8 ) x + 8 1 4 a − 3 0 4 6
10.1-b1
10.1-b
2 2 2
5 5 5
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 10 ⋅ 5 5 - 2^{10} \cdot 5^{5} − 2 1 0 ⋅ 5 5
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a + 3 ) (-a+4), (-a+3) ( − a + 4 ) , ( − a + 3 )
0
Z / 5 Z \Z/5\Z Z / 5 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.1.1
1 1 1
2 ⋅ 5 2 2 \cdot 5^{2} 2 ⋅ 5 2
1 1 1
8.284026412 8.284026412 8 . 2 8 4 0 2 6 4 1 2
2.213999186
73603923 100000 a + 358833109 100000 \frac{73603923}{100000} a + \frac{358833109}{100000} 1 0 0 0 0 0 7 3 6 0 3 9 2 3 a + 1 0 0 0 0 0 3 5 8 8 3 3 1 0 9
[ a + 1 \bigl[a + 1 [ a + 1 , a − 1 a - 1 a − 1 , a + 1 a + 1 a + 1 , − 27 a − 102 -27 a - 102 − 2 7 a − 1 0 2 , − 216 a − 811 ] -216 a - 811\bigr] − 2 1 6 a − 8 1 1 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( − 27 a − 102 ) x − 216 a − 811 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-27a-102\right){x}-216a-811 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( − 2 7 a − 1 0 2 ) x − 2 1 6 a − 8 1 1
10.1-b2
10.1-b
2 2 2
5 5 5
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 2 ⋅ 5 - 2^{2} \cdot 5 − 2 2 ⋅ 5
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a + 3 ) (-a+4), (-a+3) ( − a + 4 ) , ( − a + 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.1.2
25 25 2 5
2 2 2
1 1 1
0.331361056 0.331361056 0 . 3 3 1 3 6 1 0 5 6
2.213999186
7114676554418062503 10 a + 26620682081199569989 10 \frac{7114676554418062503}{10} a + \frac{26620682081199569989}{10} 1 0 7 1 1 4 6 7 6 5 5 4 4 1 8 0 6 2 5 0 3 a + 1 0 2 6 6 2 0 6 8 2 0 8 1 1 9 9 5 6 9 9 8 9
[ a + 1 \bigl[a + 1 [ a + 1 , a − 1 a - 1 a − 1 , a + 1 a + 1 a + 1 , − 17217 a − 64432 -17217 a - 64432 − 1 7 2 1 7 a − 6 4 4 3 2 , − 2427316 a − 9082191 ] -2427316 a - 9082191\bigr] − 2 4 2 7 3 1 6 a − 9 0 8 2 1 9 1 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( − 17217 a − 64432 ) x − 2427316 a − 9082191 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-17217a-64432\right){x}-2427316a-9082191 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( − 1 7 2 1 7 a − 6 4 4 3 2 ) x − 2 4 2 7 3 1 6 a − 9 0 8 2 1 9 1
10.1-c1
10.1-c
2 2 2
5 5 5
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 10 ⋅ 5 5 - 2^{10} \cdot 5^{5} − 2 1 0 ⋅ 5 5
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a + 3 ) (-a+4), (-a+3) ( − a + 4 ) , ( − a + 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.4.1
1 1 1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
0.054400494 0.054400494 0 . 0 5 4 4 0 0 4 9 4
14.16313473 14.16313473 1 4 . 1 6 3 1 3 4 7 3
2.059198521
73603923 100000 a + 358833109 100000 \frac{73603923}{100000} a + \frac{358833109}{100000} 1 0 0 0 0 0 7 3 6 0 3 9 2 3 a + 1 0 0 0 0 0 3 5 8 8 3 3 1 0 9
[ a + 1 \bigl[a + 1 [ a + 1 , 0 0 0 , 0 0 0 , − 5 a + 29 -5 a + 29 − 5 a + 2 9 , − 20 a + 81 ] -20 a + 81\bigr] − 2 0 a + 8 1 ]
y 2 + ( a + 1 ) x y = x 3 + ( − 5 a + 29 ) x − 20 a + 81 {y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-5a+29\right){x}-20a+81 y 2 + ( a + 1 ) x y = x 3 + ( − 5 a + 2 9 ) x − 2 0 a + 8 1
10.1-c2
10.1-c
2 2 2
5 5 5
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 2 ⋅ 5 - 2^{2} \cdot 5 − 2 2 ⋅ 5
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a + 3 ) (-a+4), (-a+3) ( − a + 4 ) , ( − a + 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.4.2
1 1 1
2 2 2
0.272002473 0.272002473 0 . 2 7 2 0 0 2 4 7 3
14.16313473 14.16313473 1 4 . 1 6 3 1 3 4 7 3
2.059198521
7114676554418062503 10 a + 26620682081199569989 10 \frac{7114676554418062503}{10} a + \frac{26620682081199569989}{10} 1 0 7 1 1 4 6 7 6 5 5 4 4 1 8 0 6 2 5 0 3 a + 1 0 2 6 6 2 0 6 8 2 0 8 1 1 9 9 5 6 9 9 8 9
[ a + 1 \bigl[a + 1 [ a + 1 , 0 0 0 , 0 0 0 , 1285 a − 4941 1285 a - 4941 1 2 8 5 a − 4 9 4 1 , − 48650 a + 182431 ] -48650 a + 182431\bigr] − 4 8 6 5 0 a + 1 8 2 4 3 1 ]
y 2 + ( a + 1 ) x y = x 3 + ( 1285 a − 4941 ) x − 48650 a + 182431 {y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(1285a-4941\right){x}-48650a+182431 y 2 + ( a + 1 ) x y = x 3 + ( 1 2 8 5 a − 4 9 4 1 ) x − 4 8 6 5 0 a + 1 8 2 4 3 1
10.1-d1
10.1-d
2 2 2
3 3 3
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 4 ⋅ 5 - 2^{4} \cdot 5 − 2 4 ⋅ 5
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a + 3 ) (-a+4), (-a+3) ( − a + 4 ) , ( − a + 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3B
1 1 1
2 2 2
0.115049867 0.115049867 0 . 1 1 5 0 4 9 8 6 7
20.19548844 20.19548844 2 0 . 1 9 5 4 8 8 4 4
1.241956719
5689 20 a + 21627 20 \frac{5689}{20} a + \frac{21627}{20} 2 0 5 6 8 9 a + 2 0 2 1 6 2 7
[ 1 \bigl[1 [ 1 , − a − 1 -a - 1 − a − 1 , 0 0 0 , 3 3 3 , 1 ] 1\bigr] 1 ]
y 2 + x y = x 3 + ( − a − 1 ) x 2 + 3 x + 1 {y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+3{x}+1 y 2 + x y = x 3 + ( − a − 1 ) x 2 + 3 x + 1
10.1-d2
10.1-d
2 2 2
3 3 3
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 12 ⋅ 5 3 - 2^{12} \cdot 5^{3} − 2 1 2 ⋅ 5 3
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a + 3 ) (-a+4), (-a+3) ( − a + 4 ) , ( − a + 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3B
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
0.038349955 0.038349955 0 . 0 3 8 3 4 9 9 5 5
20.19548844 20.19548844 2 0 . 1 9 5 4 8 8 4 4
1.241956719
18258829169 8000 a + 68318145777 8000 \frac{18258829169}{8000} a + \frac{68318145777}{8000} 8 0 0 0 1 8 2 5 8 8 2 9 1 6 9 a + 8 0 0 0 6 8 3 1 8 1 4 5 7 7 7
[ 1 \bigl[1 [ 1 , − a − 1 -a - 1 − a − 1 , 0 0 0 , − 20 a − 72 -20 a - 72 − 2 0 a − 7 2 , 128 a + 480 ] 128 a + 480\bigr] 1 2 8 a + 4 8 0 ]
y 2 + x y = x 3 + ( − a − 1 ) x 2 + ( − 20 a − 72 ) x + 128 a + 480 {y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-20a-72\right){x}+128a+480 y 2 + x y = x 3 + ( − a − 1 ) x 2 + ( − 2 0 a − 7 2 ) x + 1 2 8 a + 4 8 0
10.2-a1
10.2-a
2 2 2
3 3 3
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.2
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 12 ⋅ 5 3 - 2^{12} \cdot 5^{3} − 2 1 2 ⋅ 5 3
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a − 3 ) (-a+4), (-a-3) ( − a + 4 ) , ( − a − 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3B.1.2
1 1 1
2 2 2
1 1 1
4.047893897 4.047893897 4 . 0 4 7 8 9 3 8 9 7
1.081845150
− 18258829169 8000 a + 68318145777 8000 -\frac{18258829169}{8000} a + \frac{68318145777}{8000} − 8 0 0 0 1 8 2 5 8 8 2 9 1 6 9 a + 8 0 0 0 6 8 3 1 8 1 4 5 7 7 7
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 18 a − 68 -18 a - 68 − 1 8 a − 6 8 , − 814 a − 3046 ] -814 a - 3046\bigr] − 8 1 4 a − 3 0 4 6 ]
y 2 + x y + y = x 3 + ( − 18 a − 68 ) x − 814 a − 3046 {y}^2+{x}{y}+{y}={x}^{3}+\left(-18a-68\right){x}-814a-3046 y 2 + x y + y = x 3 + ( − 1 8 a − 6 8 ) x − 8 1 4 a − 3 0 4 6
10.2-a2
10.2-a
2 2 2
3 3 3
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.2
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 4 ⋅ 5 - 2^{4} \cdot 5 − 2 4 ⋅ 5
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a − 3 ) (-a+4), (-a-3) ( − a + 4 ) , ( − a − 3 )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3B.1.1
1 1 1
2 2 2
1 1 1
36.43104508 36.43104508 3 6 . 4 3 1 0 4 5 0 8
1.081845150
− 5689 20 a + 21627 20 -\frac{5689}{20} a + \frac{21627}{20} − 2 0 5 6 8 9 a + 2 0 2 1 6 2 7
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , 2 a + 7 2 a + 7 2 a + 7 , 30 a + 112 ] 30 a + 112\bigr] 3 0 a + 1 1 2 ]
y 2 + x y + y = x 3 + ( 2 a + 7 ) x + 30 a + 112 {y}^2+{x}{y}+{y}={x}^{3}+\left(2a+7\right){x}+30a+112 y 2 + x y + y = x 3 + ( 2 a + 7 ) x + 3 0 a + 1 1 2
10.2-b1
10.2-b
2 2 2
5 5 5
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.2
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 2 ⋅ 5 - 2^{2} \cdot 5 − 2 2 ⋅ 5
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a − 3 ) (-a+4), (-a-3) ( − a + 4 ) , ( − a − 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.1.2
25 25 2 5
2 2 2
1 1 1
0.331361056 0.331361056 0 . 3 3 1 3 6 1 0 5 6
2.213999186
− 7114676554418062503 10 a + 26620682081199569989 10 -\frac{7114676554418062503}{10} a + \frac{26620682081199569989}{10} − 1 0 7 1 1 4 6 7 6 5 5 4 4 1 8 0 6 2 5 0 3 a + 1 0 2 6 6 2 0 6 8 2 0 8 1 1 9 9 5 6 9 9 8 9
[ a + 1 \bigl[a + 1 [ a + 1 , a − 1 a - 1 a − 1 , 1 1 1 , 17221 a − 64425 17221 a - 64425 1 7 2 2 1 a − 6 4 4 2 5 , 2362884 a − 8841125 ] 2362884 a - 8841125\bigr] 2 3 6 2 8 8 4 a − 8 8 4 1 1 2 5 ]
y 2 + ( a + 1 ) x y + y = x 3 + ( a − 1 ) x 2 + ( 17221 a − 64425 ) x + 2362884 a − 8841125 {y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(17221a-64425\right){x}+2362884a-8841125 y 2 + ( a + 1 ) x y + y = x 3 + ( a − 1 ) x 2 + ( 1 7 2 2 1 a − 6 4 4 2 5 ) x + 2 3 6 2 8 8 4 a − 8 8 4 1 1 2 5
10.2-b2
10.2-b
2 2 2
5 5 5
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.2
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 10 ⋅ 5 5 - 2^{10} \cdot 5^{5} − 2 1 0 ⋅ 5 5
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a − 3 ) (-a+4), (-a-3) ( − a + 4 ) , ( − a − 3 )
0
Z / 5 Z \Z/5\Z Z / 5 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.1.1
1 1 1
2 ⋅ 5 2 2 \cdot 5^{2} 2 ⋅ 5 2
1 1 1
8.284026412 8.284026412 8 . 2 8 4 0 2 6 4 1 2
2.213999186
− 73603923 100000 a + 358833109 100000 -\frac{73603923}{100000} a + \frac{358833109}{100000} − 1 0 0 0 0 0 7 3 6 0 3 9 2 3 a + 1 0 0 0 0 0 3 5 8 8 3 3 1 0 9
[ a + 1 \bigl[a + 1 [ a + 1 , a − 1 a - 1 a − 1 , 1 1 1 , 31 a − 95 31 a - 95 3 1 a − 9 5 , 114 a − 405 ] 114 a - 405\bigr] 1 1 4 a − 4 0 5 ]
y 2 + ( a + 1 ) x y + y = x 3 + ( a − 1 ) x 2 + ( 31 a − 95 ) x + 114 a − 405 {y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(31a-95\right){x}+114a-405 y 2 + ( a + 1 ) x y + y = x 3 + ( a − 1 ) x 2 + ( 3 1 a − 9 5 ) x + 1 1 4 a − 4 0 5
10.2-c1
10.2-c
2 2 2
5 5 5
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.2
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 2 ⋅ 5 - 2^{2} \cdot 5 − 2 2 ⋅ 5
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a − 3 ) (-a+4), (-a-3) ( − a + 4 ) , ( − a − 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.4.2
1 1 1
2 2 2
0.272002473 0.272002473 0 . 2 7 2 0 0 2 4 7 3
14.16313473 14.16313473 1 4 . 1 6 3 1 3 4 7 3
2.059198521
− 7114676554418062503 10 a + 26620682081199569989 10 -\frac{7114676554418062503}{10} a + \frac{26620682081199569989}{10} − 1 0 7 1 1 4 6 7 6 5 5 4 4 1 8 0 6 2 5 0 3 a + 1 0 2 6 6 2 0 6 8 2 0 8 1 1 9 9 5 6 9 9 8 9
[ a + 1 \bigl[a + 1 [ a + 1 , − a -a − a , 0 0 0 , − 1285 a − 4941 -1285 a - 4941 − 1 2 8 5 a − 4 9 4 1 , 48650 a + 182431 ] 48650 a + 182431\bigr] 4 8 6 5 0 a + 1 8 2 4 3 1 ]
y 2 + ( a + 1 ) x y = x 3 − a x 2 + ( − 1285 a − 4941 ) x + 48650 a + 182431 {y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-1285a-4941\right){x}+48650a+182431 y 2 + ( a + 1 ) x y = x 3 − a x 2 + ( − 1 2 8 5 a − 4 9 4 1 ) x + 4 8 6 5 0 a + 1 8 2 4 3 1
10.2-c2
10.2-c
2 2 2
5 5 5
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.2
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 10 ⋅ 5 5 - 2^{10} \cdot 5^{5} − 2 1 0 ⋅ 5 5
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a − 3 ) (-a+4), (-a-3) ( − a + 4 ) , ( − a − 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B.4.1
1 1 1
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
0.054400494 0.054400494 0 . 0 5 4 4 0 0 4 9 4
14.16313473 14.16313473 1 4 . 1 6 3 1 3 4 7 3
2.059198521
− 73603923 100000 a + 358833109 100000 -\frac{73603923}{100000} a + \frac{358833109}{100000} − 1 0 0 0 0 0 7 3 6 0 3 9 2 3 a + 1 0 0 0 0 0 3 5 8 8 3 3 1 0 9
[ a + 1 \bigl[a + 1 [ a + 1 , − a -a − a , 0 0 0 , 5 a + 29 5 a + 29 5 a + 2 9 , 20 a + 81 ] 20 a + 81\bigr] 2 0 a + 8 1 ]
y 2 + ( a + 1 ) x y = x 3 − a x 2 + ( 5 a + 29 ) x + 20 a + 81 {y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(5a+29\right){x}+20a+81 y 2 + ( a + 1 ) x y = x 3 − a x 2 + ( 5 a + 2 9 ) x + 2 0 a + 8 1
10.2-d1
10.2-d
2 2 2
3 3 3
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.2
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 12 ⋅ 5 3 - 2^{12} \cdot 5^{3} − 2 1 2 ⋅ 5 3
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a − 3 ) (-a+4), (-a-3) ( − a + 4 ) , ( − a − 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3B
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
0.038349955 0.038349955 0 . 0 3 8 3 4 9 9 5 5
20.19548844 20.19548844 2 0 . 1 9 5 4 8 8 4 4
1.241956719
− 18258829169 8000 a + 68318145777 8000 -\frac{18258829169}{8000} a + \frac{68318145777}{8000} − 8 0 0 0 1 8 2 5 8 8 2 9 1 6 9 a + 8 0 0 0 6 8 3 1 8 1 4 5 7 7 7
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , 0 0 0 , 20 a − 72 20 a - 72 2 0 a − 7 2 , − 128 a + 480 ] -128 a + 480\bigr] − 1 2 8 a + 4 8 0 ]
y 2 + x y = x 3 + ( a − 1 ) x 2 + ( 20 a − 72 ) x − 128 a + 480 {y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(20a-72\right){x}-128a+480 y 2 + x y = x 3 + ( a − 1 ) x 2 + ( 2 0 a − 7 2 ) x − 1 2 8 a + 4 8 0
10.2-d2
10.2-d
2 2 2
3 3 3
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
10.2
2 ⋅ 5 2 \cdot 5 2 ⋅ 5
− 2 4 ⋅ 5 - 2^{4} \cdot 5 − 2 4 ⋅ 5
1.18914 1.18914 1 . 1 8 9 1 4
( − a + 4 ) , ( − a − 3 ) (-a+4), (-a-3) ( − a + 4 ) , ( − a − 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
3 3 3
3B
1 1 1
2 2 2
0.115049867 0.115049867 0 . 1 1 5 0 4 9 8 6 7
20.19548844 20.19548844 2 0 . 1 9 5 4 8 8 4 4
1.241956719
− 5689 20 a + 21627 20 -\frac{5689}{20} a + \frac{21627}{20} − 2 0 5 6 8 9 a + 2 0 2 1 6 2 7
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , 0 0 0 , 3 3 3 , 1 ] 1\bigr] 1 ]
y 2 + x y = x 3 + ( a − 1 ) x 2 + 3 x + 1 {y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+3{x}+1 y 2 + x y = x 3 + ( a − 1 ) x 2 + 3 x + 1
14.1-a1
14.1-a
6 6 6
18 18 1 8
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
14.1
2 ⋅ 7 2 \cdot 7 2 ⋅ 7
2 36 ⋅ 7 2 2^{36} \cdot 7^{2} 2 3 6 ⋅ 7 2
1.29349 1.29349 1 . 2 9 3 4 9
( − a + 4 ) , ( − 2 a + 7 ) (-a+4), (-2a+7) ( − a + 4 ) , ( − 2 a + 7 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2^{2} 2 2
12.63051067 12.63051067 1 2 . 6 3 0 5 1 0 6 7
0.436190660 0.436190660 0 . 4 3 6 1 9 0 6 6 0
1.472425245
− 548347731625 1835008 -\frac{548347731625}{1835008} − 1 8 3 5 0 0 8 5 4 8 3 4 7 7 3 1 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 171 -171 − 1 7 1 , − 874 ] -874\bigr] − 8 7 4 ]
y 2 + x y + y = x 3 − 171 x − 874 {y}^2+{x}{y}+{y}={x}^{3}-171{x}-874 y 2 + x y + y = x 3 − 1 7 1 x − 8 7 4
14.1-a2
14.1-a
6 6 6
18 18 1 8
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
14.1
2 ⋅ 7 2 \cdot 7 2 ⋅ 7
2 4 ⋅ 7 2 2^{4} \cdot 7^{2} 2 4 ⋅ 7 2
1.29349 1.29349 1 . 2 9 3 4 9
( − a + 4 ) , ( − 2 a + 7 ) (-a+4), (-2a+7) ( − a + 4 ) , ( − 2 a + 7 )
1 1 1
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2^{2} 2 2
1.403390075 1.403390075 1 . 4 0 3 3 9 0 0 7 5
35.33144352 35.33144352 3 5 . 3 3 1 4 4 3 5 2
1.472425245
− 15625 28 -\frac{15625}{28} − 2 8 1 5 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 + x y + y = x 3 − x {y}^2+{x}{y}+{y}={x}^{3}-{x} y 2 + x y + y = x 3 − x
14.1-a3
14.1-a
6 6 6
18 18 1 8
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
14.1
2 ⋅ 7 2 \cdot 7 2 ⋅ 7
2 12 ⋅ 7 6 2^{12} \cdot 7^{6} 2 1 2 ⋅ 7 6
1.29349 1.29349 1 . 2 9 3 4 9
( − a + 4 ) , ( − 2 a + 7 ) (-a+4), (-2a+7) ( − a + 4 ) , ( − 2 a + 7 )
1 1 1
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
4.210170225 4.210170225 4 . 2 1 0 1 7 0 2 2 5
3.925715946 3.925715946 3 . 9 2 5 7 1 5 9 4 6
1.472425245
9938375 21952 \frac{9938375}{21952} 2 1 9 5 2 9 9 3 8 3 7 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , 4 4 4 , − 6 ] -6\bigr] − 6 ]
y 2 + x y + y = x 3 + 4 x − 6 {y}^2+{x}{y}+{y}={x}^{3}+4{x}-6 y 2 + x y + y = x 3 + 4 x − 6
14.1-a4
14.1-a
6 6 6
18 18 1 8
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
14.1
2 ⋅ 7 2 \cdot 7 2 ⋅ 7
2 6 ⋅ 7 12 2^{6} \cdot 7^{12} 2 6 ⋅ 7 1 2
1.29349 1.29349 1 . 2 9 3 4 9
( − a + 4 ) , ( − 2 a + 7 ) (-a+4), (-2a+7) ( − a + 4 ) , ( − 2 a + 7 )
1 1 1
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 3 ⋅ 3 2^{3} \cdot 3 2 3 ⋅ 3
2.105085112 2.105085112 2 . 1 0 5 0 8 5 1 1 2
3.925715946 3.925715946 3 . 9 2 5 7 1 5 9 4 6
1.472425245
4956477625 941192 \frac{4956477625}{941192} 9 4 1 1 9 2 4 9 5 6 4 7 7 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 36 -36 − 3 6 , − 70 ] -70\bigr] − 7 0 ]
y 2 + x y + y = x 3 − 36 x − 70 {y}^2+{x}{y}+{y}={x}^{3}-36{x}-70 y 2 + x y + y = x 3 − 3 6 x − 7 0
14.1-a5
14.1-a
6 6 6
18 18 1 8
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
14.1
2 ⋅ 7 2 \cdot 7 2 ⋅ 7
2 2 ⋅ 7 4 2^{2} \cdot 7^{4} 2 2 ⋅ 7 4
1.29349 1.29349 1 . 2 9 3 4 9
( − a + 4 ) , ( − 2 a + 7 ) (-a+4), (-2a+7) ( − a + 4 ) , ( − 2 a + 7 )
1 1 1
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 3 2^{3} 2 3
0.701695037 0.701695037 0 . 7 0 1 6 9 5 0 3 7
35.33144352 35.33144352 3 5 . 3 3 1 4 4 3 5 2
1.472425245
128787625 98 \frac{128787625}{98} 9 8 1 2 8 7 8 7 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 11 -11 − 1 1 , 12 ] 12\bigr] 1 2 ]
y 2 + x y + y = x 3 − 11 x + 12 {y}^2+{x}{y}+{y}={x}^{3}-11{x}+12 y 2 + x y + y = x 3 − 1 1 x + 1 2
14.1-a6
14.1-a
6 6 6
18 18 1 8
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
14.1
2 ⋅ 7 2 \cdot 7 2 ⋅ 7
2 18 ⋅ 7 4 2^{18} \cdot 7^{4} 2 1 8 ⋅ 7 4
1.29349 1.29349 1 . 2 9 3 4 9
( − a + 4 ) , ( − 2 a + 7 ) (-a+4), (-2a+7) ( − a + 4 ) , ( − 2 a + 7 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 3 2^{3} 2 3
6.315255337 6.315255337 6 . 3 1 5 2 5 5 3 3 7
0.436190660 0.436190660 0 . 4 3 6 1 9 0 6 6 0
1.472425245
2251439055699625 25088 \frac{2251439055699625}{25088} 2 5 0 8 8 2 2 5 1 4 3 9 0 5 5 6 9 9 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 2731 -2731 − 2 7 3 1 , − 55146 ] -55146\bigr] − 5 5 1 4 6 ]
y 2 + x y + y = x 3 − 2731 x − 55146 {y}^2+{x}{y}+{y}={x}^{3}-2731{x}-55146 y 2 + x y + y = x 3 − 2 7 3 1 x − 5 5 1 4 6
14.1-b1
14.1-b
6 6 6
18 18 1 8
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
14.1
2 ⋅ 7 2 \cdot 7 2 ⋅ 7
2 36 ⋅ 7 2 2^{36} \cdot 7^{2} 2 3 6 ⋅ 7 2
1.29349 1.29349 1 . 2 9 3 4 9
( − a + 4 ) , ( − 2 a + 7 ) (-a+4), (-2a+7) ( − a + 4 ) , ( − 2 a + 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 2 2^{2} 2 2
1 1 1
7.027708105 7.027708105 7 . 0 2 7 7 0 8 1 0 5
0.939116998
− 548347731625 1835008 -\frac{548347731625}{1835008} − 1 8 3 5 0 0 8 5 4 8 3 4 7 7 3 1 6 2 5
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , 0 0 0 , 20462 a − 76559 20462 a - 76559 2 0 4 6 2 a − 7 6 5 5 9 , − 3121544 a + 11679749 ] -3121544 a + 11679749\bigr] − 3 1 2 1 5 4 4 a + 1 1 6 7 9 7 4 9 ]
y 2 + x y = x 3 + ( a − 1 ) x 2 + ( 20462 a − 76559 ) x − 3121544 a + 11679749 {y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(20462a-76559\right){x}-3121544a+11679749 y 2 + x y = x 3 + ( a − 1 ) x 2 + ( 2 0 4 6 2 a − 7 6 5 5 9 ) x − 3 1 2 1 5 4 4 a + 1 1 6 7 9 7 4 9
14.1-b2
14.1-b
6 6 6
18 18 1 8
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
14.1
2 ⋅ 7 2 \cdot 7 2 ⋅ 7
2 4 ⋅ 7 2 2^{4} \cdot 7^{2} 2 4 ⋅ 7 2
1.29349 1.29349 1 . 2 9 3 4 9
( − a + 4 ) , ( − 2 a + 7 ) (-a+4), (-2a+7) ( − a + 4 ) , ( − 2 a + 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 2 2^{2} 2 2
1 1 1
7.027708105 7.027708105 7 . 0 2 7 7 0 8 1 0 5
0.939116998
− 15625 28 -\frac{15625}{28} − 2 8 1 5 6 2 5
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , 0 0 0 , 62 a − 229 62 a - 229 6 2 a − 2 2 9 , 960 a − 3591 ] 960 a - 3591\bigr] 9 6 0 a − 3 5 9 1 ]
y 2 + x y = x 3 + ( a − 1 ) x 2 + ( 62 a − 229 ) x + 960 a − 3591 {y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(62a-229\right){x}+960a-3591 y 2 + x y = x 3 + ( a − 1 ) x 2 + ( 6 2 a − 2 2 9 ) x + 9 6 0 a − 3 5 9 1
14.1-b3
14.1-b
6 6 6
18 18 1 8
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
14.1
2 ⋅ 7 2 \cdot 7 2 ⋅ 7
2 12 ⋅ 7 6 2^{12} \cdot 7^{6} 2 1 2 ⋅ 7 6
1.29349 1.29349 1 . 2 9 3 4 9
( − a + 4 ) , ( − 2 a + 7 ) (-a+4), (-2a+7) ( − a + 4 ) , ( − 2 a + 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs
1 1 1
2 2 2^{2} 2 2
1 1 1
7.027708105 7.027708105 7 . 0 2 7 7 0 8 1 0 5
0.939116998
9938375 21952 \frac{9938375}{21952} 2 1 9 5 2 9 9 3 8 3 7 5
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , 0 0 0 , − 538 a + 2016 -538 a + 2016 − 5 3 8 a + 2 0 1 6 , − 21216 a + 79384 ] -21216 a + 79384\bigr] − 2 1 2 1 6 a + 7 9 3 8 4 ]
y 2 + x y = x 3 + ( a − 1 ) x 2 + ( − 538 a + 2016 ) x − 21216 a + 79384 {y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-538a+2016\right){x}-21216a+79384 y 2 + x y = x 3 + ( a − 1 ) x 2 + ( − 5 3 8 a + 2 0 1 6 ) x − 2 1 2 1 6 a + 7 9 3 8 4
14.1-b4
14.1-b
6 6 6
18 18 1 8
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
14.1
2 ⋅ 7 2 \cdot 7 2 ⋅ 7
2 6 ⋅ 7 12 2^{6} \cdot 7^{12} 2 6 ⋅ 7 1 2
1.29349 1.29349 1 . 2 9 3 4 9
( − a + 4 ) , ( − 2 a + 7 ) (-a+4), (-2a+7) ( − a + 4 ) , ( − 2 a + 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs
1 1 1
2 2 2^{2} 2 2
1 1 1
7.027708105 7.027708105 7 . 0 2 7 7 0 8 1 0 5
0.939116998
4956477625 941192 \frac{4956477625}{941192} 9 4 1 1 9 2 4 9 5 6 4 7 7 6 2 5
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , 0 0 0 , 4262 a − 15944 4262 a - 15944 4 2 6 2 a − 1 5 9 4 4 , − 246560 a + 922544 ] -246560 a + 922544\bigr] − 2 4 6 5 6 0 a + 9 2 2 5 4 4 ]
y 2 + x y = x 3 + ( a − 1 ) x 2 + ( 4262 a − 15944 ) x − 246560 a + 922544 {y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(4262a-15944\right){x}-246560a+922544 y 2 + x y = x 3 + ( a − 1 ) x 2 + ( 4 2 6 2 a − 1 5 9 4 4 ) x − 2 4 6 5 6 0 a + 9 2 2 5 4 4
14.1-b5
14.1-b
6 6 6
18 18 1 8
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
14.1
2 ⋅ 7 2 \cdot 7 2 ⋅ 7
2 2 ⋅ 7 4 2^{2} \cdot 7^{4} 2 2 ⋅ 7 4
1.29349 1.29349 1 . 2 9 3 4 9
( − a + 4 ) , ( − 2 a + 7 ) (-a+4), (-2a+7) ( − a + 4 ) , ( − 2 a + 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 2 2^{2} 2 2
1 1 1
7.027708105 7.027708105 7 . 0 2 7 7 0 8 1 0 5
0.939116998
128787625 98 \frac{128787625}{98} 9 8 1 2 8 7 8 7 6 2 5
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , 0 0 0 , 1262 a − 4719 1262 a - 4719 1 2 6 2 a − 4 7 1 9 , 45312 a − 169541 ] 45312 a - 169541\bigr] 4 5 3 1 2 a − 1 6 9 5 4 1 ]
y 2 + x y = x 3 + ( a − 1 ) x 2 + ( 1262 a − 4719 ) x + 45312 a − 169541 {y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1262a-4719\right){x}+45312a-169541 y 2 + x y = x 3 + ( a − 1 ) x 2 + ( 1 2 6 2 a − 4 7 1 9 ) x + 4 5 3 1 2 a − 1 6 9 5 4 1
14.1-b6
14.1-b
6 6 6
18 18 1 8
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
14.1
2 ⋅ 7 2 \cdot 7 2 ⋅ 7
2 18 ⋅ 7 4 2^{18} \cdot 7^{4} 2 1 8 ⋅ 7 4
1.29349 1.29349 1 . 2 9 3 4 9
( − a + 4 ) , ( − 2 a + 7 ) (-a+4), (-2a+7) ( − a + 4 ) , ( − 2 a + 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 2 2^{2} 2 2
1 1 1
7.027708105 7.027708105 7 . 0 2 7 7 0 8 1 0 5
0.939116998
2251439055699625 25088 \frac{2251439055699625}{25088} 2 5 0 8 8 2 2 5 1 4 3 9 0 5 5 6 9 9 6 2 5
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , 0 0 0 , 327662 a − 1225999 327662 a - 1225999 3 2 7 6 6 2 a − 1 2 2 5 9 9 9 , − 197976456 a + 740760069 ] -197976456 a + 740760069\bigr] − 1 9 7 9 7 6 4 5 6 a + 7 4 0 7 6 0 0 6 9 ]
y 2 + x y = x 3 + ( a − 1 ) x 2 + ( 327662 a − 1225999 ) x − 197976456 a + 740760069 {y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(327662a-1225999\right){x}-197976456a+740760069 y 2 + x y = x 3 + ( a − 1 ) x 2 + ( 3 2 7 6 6 2 a − 1 2 2 5 9 9 9 ) x − 1 9 7 9 7 6 4 5 6 a + 7 4 0 7 6 0 0 6 9
16.1-a1
16.1-a
4 4 4
14 14 1 4
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
16.1
2 4 2^{4} 2 4
2 12 2^{12} 2 1 2
1.33740 1.33740 1 . 3 3 7 4 0
( − a + 4 ) (-a+4) ( − a + 4 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
potential \textsf{potential} potential
− 7 -7 − 7
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
1 1 1
2 2 2^{2} 2 2
1 1 1
13.08192952 13.08192952 1 3 . 0 8 1 9 2 9 5 2
1.748146366
− 3375 -3375 − 3 3 7 5
[ a \bigl[a [ a , 1 1 1 , a a a , − 5 a − 19 -5 a - 19 − 5 a − 1 9 , 7 a + 26 ] 7 a + 26\bigr] 7 a + 2 6 ]
y 2 + a x y + a y = x 3 + x 2 + ( − 5 a − 19 ) x + 7 a + 26 {y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-5a-19\right){x}+7a+26 y 2 + a x y + a y = x 3 + x 2 + ( − 5 a − 1 9 ) x + 7 a + 2 6
16.1-a2
16.1-a
4 4 4
14 14 1 4
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
16.1
2 4 2^{4} 2 4
2 12 2^{12} 2 1 2
1.33740 1.33740 1 . 3 3 7 4 0
( − a + 4 ) (-a+4) ( − a + 4 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
potential \textsf{potential} potential
− 7 -7 − 7
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
1 1 1
2 2 2^{2} 2 2
1 1 1
13.08192952 13.08192952 1 3 . 0 8 1 9 2 9 5 2
1.748146366
− 3375 -3375 − 3 3 7 5
[ a \bigl[a [ a , 1 1 1 , a a a , 5 a − 19 5 a - 19 5 a − 1 9 , − 7 a + 26 ] -7 a + 26\bigr] − 7 a + 2 6 ]
y 2 + a x y + a y = x 3 + x 2 + ( 5 a − 19 ) x − 7 a + 26 {y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(5a-19\right){x}-7a+26 y 2 + a x y + a y = x 3 + x 2 + ( 5 a − 1 9 ) x − 7 a + 2 6
16.1-a3
16.1-a
4 4 4
14 14 1 4
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
16.1
2 4 2^{4} 2 4
2 12 2^{12} 2 1 2
1.33740 1.33740 1 . 3 3 7 4 0
( − a + 4 ) (-a+4) ( − a + 4 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
potential \textsf{potential} potential
− 28 -28 − 2 8
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
1 1 1
2 2 2^{2} 2 2
1 1 1
13.08192952 13.08192952 1 3 . 0 8 1 9 2 9 5 2
1.748146366
16581375 16581375 1 6 5 8 1 3 7 5
[ a \bigl[a [ a , 1 1 1 , a a a , − 85 a − 319 -85 a - 319 − 8 5 a − 3 1 9 , 699 a + 2614 ] 699 a + 2614\bigr] 6 9 9 a + 2 6 1 4 ]
y 2 + a x y + a y = x 3 + x 2 + ( − 85 a − 319 ) x + 699 a + 2614 {y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-85a-319\right){x}+699a+2614 y 2 + a x y + a y = x 3 + x 2 + ( − 8 5 a − 3 1 9 ) x + 6 9 9 a + 2 6 1 4
16.1-a4
16.1-a
4 4 4
14 14 1 4
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
16.1
2 4 2^{4} 2 4
2 12 2^{12} 2 1 2
1.33740 1.33740 1 . 3 3 7 4 0
( − a + 4 ) (-a+4) ( − a + 4 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
potential \textsf{potential} potential
− 28 -28 − 2 8
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
1 1 1
2 2 2^{2} 2 2
1 1 1
13.08192952 13.08192952 1 3 . 0 8 1 9 2 9 5 2
1.748146366
16581375 16581375 1 6 5 8 1 3 7 5
[ a \bigl[a [ a , 1 1 1 , a a a , 85 a − 319 85 a - 319 8 5 a − 3 1 9 , − 699 a + 2614 ] -699 a + 2614\bigr] − 6 9 9 a + 2 6 1 4 ]
y 2 + a x y + a y = x 3 + x 2 + ( 85 a − 319 ) x − 699 a + 2614 {y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(85a-319\right){x}-699a+2614 y 2 + a x y + a y = x 3 + x 2 + ( 8 5 a − 3 1 9 ) x − 6 9 9 a + 2 6 1 4
18.1-a1
18.1-a
2 2 2
2 2 2
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
18.1
2 ⋅ 3 2 2 \cdot 3^{2} 2 ⋅ 3 2
2 8 ⋅ 3 8 2^{8} \cdot 3^{8} 2 8 ⋅ 3 8
1.37737 1.37737 1 . 3 7 7 3 7
( − a + 4 ) , ( 3 ) (-a+4), (3) ( − a + 4 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
8.501880177 8.501880177 8 . 5 0 1 8 8 0 1 7 7
1.136111527
4913 1296 \frac{4913}{1296} 1 2 9 6 4 9 1 3
[ a + 1 \bigl[a + 1 [ a + 1 , − a − 1 -a - 1 − a − 1 , a a a , 2 2 2 , − 38 a − 142 ] -38 a - 142\bigr] − 3 8 a − 1 4 2 ]
y 2 + ( a + 1 ) x y + a y = x 3 + ( − a − 1 ) x 2 + 2 x − 38 a − 142 {y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+2{x}-38a-142 y 2 + ( a + 1 ) x y + a y = x 3 + ( − a − 1 ) x 2 + 2 x − 3 8 a − 1 4 2
18.1-a2
18.1-a
2 2 2
2 2 2
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
18.1
2 ⋅ 3 2 2 \cdot 3^{2} 2 ⋅ 3 2
2 4 ⋅ 3 16 2^{4} \cdot 3^{16} 2 4 ⋅ 3 1 6
1.37737 1.37737 1 . 3 7 7 3 7
( − a + 4 ) , ( 3 ) (-a+4), (3) ( − a + 4 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
8.501880177 8.501880177 8 . 5 0 1 8 8 0 1 7 7
1.136111527
838561807 26244 \frac{838561807}{26244} 2 6 2 4 4 8 3 8 5 6 1 8 0 7
[ a + 1 \bigl[a + 1 [ a + 1 , − a − 1 -a - 1 − a − 1 , a a a , − 80 a − 298 -80 a - 298 − 8 0 a − 2 9 8 , − 738 a − 2762 ] -738 a - 2762\bigr] − 7 3 8 a − 2 7 6 2 ]
y 2 + ( a + 1 ) x y + a y = x 3 + ( − a − 1 ) x 2 + ( − 80 a − 298 ) x − 738 a − 2762 {y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-80a-298\right){x}-738a-2762 y 2 + ( a + 1 ) x y + a y = x 3 + ( − a − 1 ) x 2 + ( − 8 0 a − 2 9 8 ) x − 7 3 8 a − 2 7 6 2
18.1-b1
18.1-b
2 2 2
2 2 2
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
18.1
2 ⋅ 3 2 2 \cdot 3^{2} 2 ⋅ 3 2
2 8 ⋅ 3 8 2^{8} \cdot 3^{8} 2 8 ⋅ 3 8
1.37737 1.37737 1 . 3 7 7 3 7
( − a + 4 ) , ( 3 ) (-a+4), (3) ( − a + 4 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
8.501880177 8.501880177 8 . 5 0 1 8 8 0 1 7 7
1.136111527
4913 1296 \frac{4913}{1296} 1 2 9 6 4 9 1 3
[ a + 1 \bigl[a + 1 [ a + 1 , − 1 -1 − 1 , a a a , − a + 2 -a + 2 − a + 2 , 38 a − 142 ] 38 a - 142\bigr] 3 8 a − 1 4 2 ]
y 2 + ( a + 1 ) x y + a y = x 3 − x 2 + ( − a + 2 ) x + 38 a − 142 {y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-a+2\right){x}+38a-142 y 2 + ( a + 1 ) x y + a y = x 3 − x 2 + ( − a + 2 ) x + 3 8 a − 1 4 2
18.1-b2
18.1-b
2 2 2
2 2 2
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
18.1
2 ⋅ 3 2 2 \cdot 3^{2} 2 ⋅ 3 2
2 4 ⋅ 3 16 2^{4} \cdot 3^{16} 2 4 ⋅ 3 1 6
1.37737 1.37737 1 . 3 7 7 3 7
( − a + 4 ) , ( 3 ) (-a+4), (3) ( − a + 4 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
8.501880177 8.501880177 8 . 5 0 1 8 8 0 1 7 7
1.136111527
838561807 26244 \frac{838561807}{26244} 2 6 2 4 4 8 3 8 5 6 1 8 0 7
[ a + 1 \bigl[a + 1 [ a + 1 , − 1 -1 − 1 , a a a , 79 a − 298 79 a - 298 7 9 a − 2 9 8 , 738 a − 2762 ] 738 a - 2762\bigr] 7 3 8 a − 2 7 6 2 ]
y 2 + ( a + 1 ) x y + a y = x 3 − x 2 + ( 79 a − 298 ) x + 738 a − 2762 {y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(79a-298\right){x}+738a-2762 y 2 + ( a + 1 ) x y + a y = x 3 − x 2 + ( 7 9 a − 2 9 8 ) x + 7 3 8 a − 2 7 6 2
20.1-a1
20.1-a
1 1 1
1 1 1
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
− 2 8 ⋅ 5 - 2^{8} \cdot 5 − 2 8 ⋅ 5
1.41413 1.41413 1 . 4 1 4 1 3
( − a + 4 ) , ( − a + 3 ) (-a+4), (-a+3) ( − a + 4 ) , ( − a + 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
1 1 1
1 1 1
1 1 1
13.92592824 13.92592824 1 3 . 9 2 5 9 2 8 2 4
1.860930439
3236 5 a + 12108 5 \frac{3236}{5} a + \frac{12108}{5} 5 3 2 3 6 a + 5 1 2 1 0 8
[ a \bigl[a [ a , − a + 1 -a + 1 − a + 1 , 0 0 0 , − 13 a − 26 -13 a - 26 − 1 3 a − 2 6 , − 32 a − 99 ] -32 a - 99\bigr] − 3 2 a − 9 9 ]
y 2 + a x y = x 3 + ( − a + 1 ) x 2 + ( − 13 a − 26 ) x − 32 a − 99 {y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-13a-26\right){x}-32a-99 y 2 + a x y = x 3 + ( − a + 1 ) x 2 + ( − 1 3 a − 2 6 ) x − 3 2 a − 9 9
20.1-b1
20.1-b
1 1 1
1 1 1
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
− 2 8 ⋅ 5 - 2^{8} \cdot 5 − 2 8 ⋅ 5
1.41413 1.41413 1 . 4 1 4 1 3
( − a + 4 ) , ( − a + 3 ) (-a+4), (-a+3) ( − a + 4 ) , ( − a + 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
1 1 1
1 1 1
0.223019342 0.223019342 0 . 2 2 3 0 1 9 3 4 2
31.97666518 31.97666518 3 1 . 9 7 6 6 6 5 1 8
1.905950784
3236 5 a + 12108 5 \frac{3236}{5} a + \frac{12108}{5} 5 3 2 3 6 a + 5 1 2 1 0 8
[ a \bigl[a [ a , − 1 -1 − 1 , 0 0 0 , 2 2 2 , − 2 a + 8 ] -2 a + 8\bigr] − 2 a + 8 ]
y 2 + a x y = x 3 − x 2 + 2 x − 2 a + 8 {y}^2+a{x}{y}={x}^{3}-{x}^{2}+2{x}-2a+8 y 2 + a x y = x 3 − x 2 + 2 x − 2 a + 8
20.2-a1
20.2-a
1 1 1
1 1 1
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
20.2
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
− 2 8 ⋅ 5 - 2^{8} \cdot 5 − 2 8 ⋅ 5
1.41413 1.41413 1 . 4 1 4 1 3
( − a + 4 ) , ( − a − 3 ) (-a+4), (-a-3) ( − a + 4 ) , ( − a − 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
1 1 1
1 1 1
1 1 1
13.92592824 13.92592824 1 3 . 9 2 5 9 2 8 2 4
1.860930439
− 3236 5 a + 12108 5 -\frac{3236}{5} a + \frac{12108}{5} − 5 3 2 3 6 a + 5 1 2 1 0 8
[ a \bigl[a [ a , a + 1 a + 1 a + 1 , 0 0 0 , 13 a − 26 13 a - 26 1 3 a − 2 6 , 32 a − 99 ] 32 a - 99\bigr] 3 2 a − 9 9 ]
y 2 + a x y = x 3 + ( a + 1 ) x 2 + ( 13 a − 26 ) x + 32 a − 99 {y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(13a-26\right){x}+32a-99 y 2 + a x y = x 3 + ( a + 1 ) x 2 + ( 1 3 a − 2 6 ) x + 3 2 a − 9 9
20.2-b1
20.2-b
1 1 1
1 1 1
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
20.2
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
− 2 8 ⋅ 5 - 2^{8} \cdot 5 − 2 8 ⋅ 5
1.41413 1.41413 1 . 4 1 4 1 3
( − a + 4 ) , ( − a − 3 ) (-a+4), (-a-3) ( − a + 4 ) , ( − a − 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
1 1 1
1 1 1
0.223019342 0.223019342 0 . 2 2 3 0 1 9 3 4 2
31.97666518 31.97666518 3 1 . 9 7 6 6 6 5 1 8
1.905950784
− 3236 5 a + 12108 5 -\frac{3236}{5} a + \frac{12108}{5} − 5 3 2 3 6 a + 5 1 2 1 0 8
[ a \bigl[a [ a , − 1 -1 − 1 , 0 0 0 , 2 2 2 , 2 a + 8 ] 2 a + 8\bigr] 2 a + 8 ]
y 2 + a x y = x 3 − x 2 + 2 x + 2 a + 8 {y}^2+a{x}{y}={x}^{3}-{x}^{2}+2{x}+2a+8 y 2 + a x y = x 3 − x 2 + 2 x + 2 a + 8
22.1-a1
22.1-a
2 2 2
2 2 2
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
22.1
2 ⋅ 11 2 \cdot 11 2 ⋅ 1 1
2 4 ⋅ 1 1 2 2^{4} \cdot 11^{2} 2 4 ⋅ 1 1 2
1.44823 1.44823 1 . 4 4 8 2 3
( − a + 4 ) , ( a − 5 ) (-a+4), (a-5) ( − a + 4 ) , ( a − 5 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
0.350694013 0.350694013 0 . 3 5 0 6 9 4 0 1 3
18.00713737 18.00713737 1 8 . 0 0 7 1 3 7 3 7
1.687753482
69372345 242 a − 519137881 484 \frac{69372345}{242} a - \frac{519137881}{484} 2 4 2 6 9 3 7 2 3 4 5 a − 4 8 4 5 1 9 1 3 7 8 8 1
[ a + 1 \bigl[a + 1 [ a + 1 , − a -a − a , a + 1 a + 1 a + 1 , − 28 a − 98 -28 a - 98 − 2 8 a − 9 8 , − 2405 a − 8994 ] -2405 a - 8994\bigr] − 2 4 0 5 a − 8 9 9 4 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 − a x 2 + ( − 28 a − 98 ) x − 2405 a − 8994 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-28a-98\right){x}-2405a-8994 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 − a x 2 + ( − 2 8 a − 9 8 ) x − 2 4 0 5 a − 8 9 9 4
22.1-a2
22.1-a
2 2 2
2 2 2
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
22.1
2 ⋅ 11 2 \cdot 11 2 ⋅ 1 1
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
1.44823 1.44823 1 . 4 4 8 2 3
( − a + 4 ) , ( a − 5 ) (-a+4), (a-5) ( − a + 4 ) , ( a − 5 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
0.701388027 0.701388027 0 . 7 0 1 3 8 8 0 2 7
18.00713737 18.00713737 1 8 . 0 0 7 1 3 7 3 7
1.687753482
− 13538239447075 22 a + 50655455887741 22 -\frac{13538239447075}{22} a + \frac{50655455887741}{22} − 2 2 1 3 5 3 8 2 3 9 4 4 7 0 7 5 a + 2 2 5 0 6 5 5 4 5 5 8 8 7 7 4 1
[ a + 1 \bigl[a + 1 [ a + 1 , − a -a − a , a + 1 a + 1 a + 1 , − 1538 a − 5748 -1538 a - 5748 − 1 5 3 8 a − 5 7 4 8 , − 63797 a − 238702 ] -63797 a - 238702\bigr] − 6 3 7 9 7 a − 2 3 8 7 0 2 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 − a x 2 + ( − 1538 a − 5748 ) x − 63797 a − 238702 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-1538a-5748\right){x}-63797a-238702 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 − a x 2 + ( − 1 5 3 8 a − 5 7 4 8 ) x − 6 3 7 9 7 a − 2 3 8 7 0 2