Base field \(\Q(\sqrt{14}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 14 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, 0, 1]))
gp: K = nfinit(Polrev([-14, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, 0, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,1]),K([0,1]),K([1,1]),K([3,4]),K([21,1])])
gp: E = ellinit([Polrev([1,1]),Polrev([0,1]),Polrev([1,1]),Polrev([3,4]),Polrev([21,1])], K);
magma: E := EllipticCurve([K![1,1],K![0,1],K![1,1],K![3,4],K![21,1]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((1)\) | = | \((1)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 1 \) | = | 1 |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((1)\) | = | \((1)\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 1 \) | = | 1 |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( -3375 \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z[(1+\sqrt{-7})/2]\) | (potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $N(\mathrm{U}(1))$ |
Mordell-Weil group
Rank: | \(0\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(-3 : a + 1 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 26.163859057524894940758162879133110656 \) | ||
Tamagawa product: | \( 1 \) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 0.87407318311696710147464771425239569723 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
No primes of bad reduction.
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .
The image is a Borel subgroup if \(p=7\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -7 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -7 }{p}\right)=-1\).
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 7 and 14.
Its isogeny class
1.1-a
consists of curves linked by isogenies of
degrees dividing 14.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.