Properties

Label 2.2.57.1-225.1-b4
Base field Q(57)\Q(\sqrt{57})
Conductor norm 225 225
CM no
Base change no
Q-curve yes
Torsion order 4 4
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(57)\Q(\sqrt{57})

Generator aa, with minimal polynomial x2x14 x^{2} - x - 14 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, -1, 1]))
 
gp: K = nfinit(Polrev([-14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, -1, 1]);
 

Weierstrass equation

y2+xy=x3+ax2+(1203a5136)x+19185a82011{y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(1203a-5136\right){x}+19185a-82011
sage: E = EllipticCurve([K([1,0]),K([0,1]),K([0,0]),K([-5136,1203]),K([-82011,19185])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,1]),Polrev([0,0]),Polrev([-5136,1203]),Polrev([-82011,19185])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,1],K![0,0],K![-5136,1203],K![-82011,19185]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(58a+9874:48134a411458:1)\left(-58 a + \frac{987}{4} : \frac{4813}{4} a - \frac{41145}{8} : 1\right)4.02770745812860094563595409075542234384.0277074581286009456359540907554223438\infty
(14a+58:7a29:1)\left(-14 a + 58 : 7 a - 29 : 1\right)0022
(2a10:a+5:1)\left(2 a - 10 : -a + 5 : 1\right)0022

Invariants

Conductor: N\frak{N} = (15)(15) = (4a+13)2(5)(4a+13)^{2}\cdot(5)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 225 225 = 32253^{2}\cdot25
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 13668751366875
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (1366875)(1366875) = (4a+13)14(5)4(4a+13)^{14}\cdot(5)^{4}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 1868347265625 1868347265625 = 3142543^{14}\cdot25^{4}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 11128464150625 \frac{111284641}{50625}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 4.0277074581286009456359540907554223438 4.0277074581286009456359540907554223438
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 8.0554149162572018912719081815108446876 8.0554149162572018912719081815108446876
Global period: Ω(E/K)\Omega(E/K) 5.1631319424297510699594780670656647538 5.1631319424297510699594780670656647538
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 8 8  =  2222^{2}\cdot2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 44
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 2.7544425258751457899834582203215905609 2.7544425258751457899834582203215905609
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

2.754442526L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/215.1631328.0554158427.5498342.754442526\displaystyle 2.754442526 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 5.163132 \cdot 8.055415 \cdot 8 } { {4^2 \cdot 7.549834} } \approx 2.754442526

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(4a+13)(4a+13) 33 44 I8I_{8}^{*} Additive 1-1 22 1414 88
(5)(5) 2525 22 I4I_{4} Non-split multiplicative 11 11 44 44

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 225.1-b consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.