Base field \(\Q(\sqrt{57}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 14 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(-58 a + \frac{987}{4} : \frac{4813}{4} a - \frac{41145}{8} : 1\right)$ | $4.0277074581286009456359540907554223438$ | $\infty$ |
$\left(-14 a + 58 : 7 a - 29 : 1\right)$ | $0$ | $2$ |
$\left(2 a - 10 : -a + 5 : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((15)\) | = | \((4a+13)^{2}\cdot(5)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 225 \) | = | \(3^{2}\cdot25\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||||
Discriminant: | $\Delta$ | = | $1366875$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((1366875)\) | = | \((4a+13)^{14}\cdot(5)^{4}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 1868347265625 \) | = | \(3^{14}\cdot25^{4}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||||
j-invariant: | $j$ | = | \( \frac{111284641}{50625} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 4.0277074581286009456359540907554223438 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 8.0554149162572018912719081815108446876 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 5.1631319424297510699594780670656647538 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 8 \) = \(2^{2}\cdot2\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(4\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 2.7544425258751457899834582203215905609 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$\displaystyle 2.754442526 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 5.163132 \cdot 8.055415 \cdot 8 } { {4^2 \cdot 7.549834} } \approx 2.754442526$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((4a+13)\) | \(3\) | \(4\) | \(I_{8}^{*}\) | Additive | \(-1\) | \(2\) | \(14\) | \(8\) |
\((5)\) | \(25\) | \(2\) | \(I_{4}\) | Non-split multiplicative | \(1\) | \(1\) | \(4\) | \(4\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
225.1-b
consists of curves linked by isogenies of
degrees dividing 16.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.