Properties

Label 3.3.361.1-11.1-a1
Base field 3.3.361.1
Conductor norm 11 11
CM no
Base change no
Q-curve no
Torsion order 3 3
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.361.1

Generator aa, with minimal polynomial x3x26x+7 x^{3} - x^{2} - 6 x + 7 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([7, -6, -1, 1]))
 
gp: K = nfinit(Polrev([7, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7, -6, -1, 1]);
 

Weierstrass equation

y2+(a2+a3)xy+(a2+a3)y=x3+(a2+a5)x2+(5a2+3a24)x6a2+a+40{y}^2+\left(a^{2}+a-3\right){x}{y}+\left(a^{2}+a-3\right){y}={x}^{3}+\left(a^{2}+a-5\right){x}^{2}+\left(5a^{2}+3a-24\right){x}-6a^{2}+a+40
sage: E = EllipticCurve([K([-3,1,1]),K([-5,1,1]),K([-3,1,1]),K([-24,3,5]),K([40,1,-6])])
 
gp: E = ellinit([Polrev([-3,1,1]),Polrev([-5,1,1]),Polrev([-3,1,1]),Polrev([-24,3,5]),Polrev([40,1,-6])], K);
 
magma: E := EllipticCurve([K![-3,1,1],K![-5,1,1],K![-3,1,1],K![-24,3,5],K![40,1,-6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/3Z\Z \oplus \Z/{3}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2a2a+11:3a2+18:1)\left(-2 a^{2} - a + 11 : -3 a^{2} + 18 : 1\right)0.533083138872671256620164673557103581250.53308313887267125662016467355710358125\infty
(a2a+5:a2+a4:1)\left(-a^{2} - a + 5 : a^{2} + a - 4 : 1\right)0033

Invariants

Conductor: N\frak{N} = (a+1)(a+1) = (a+1)(a+1)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 11 11 = 1111
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 5a2+16-5a^2+16
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (5a2+16)(-5a^2+16) = (a+1)3(a+1)^{3}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 1331 -1331 = 113-11^{3}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 151570701331a2+33364991331a871939951331 \frac{15157070}{1331} a^{2} + \frac{3336499}{1331} a - \frac{87193995}{1331}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.53308313887267125662016467355710358125 0.53308313887267125662016467355710358125
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 1.59924941661801376986049402067131074375 1.59924941661801376986049402067131074375
Global period: Ω(E/K)\Omega(E/K) 135.12600381213910995001336254578457720 135.12600381213910995001336254578457720
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 1 1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 33
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 1.2637437588683448907628200985591220104 1.2637437588683448907628200985591220104
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

1.263743759L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/21135.1260041.59924913219.0000001.263743759\displaystyle 1.263743759 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 135.126004 \cdot 1.599249 \cdot 1 } { {3^2 \cdot 19.000000} } \approx 1.263743759

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(a+1)(a+1) 1111 11 I3I_{3} Non-split multiplicative 11 11 33 33

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
33 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 11.1-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.