Properties

Label 3.3.361.1-49.2-a2
Base field 3.3.361.1
Conductor norm 49 49
CM no
Base change no
Q-curve no
Torsion order 2 2
Rank 0 0

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.361.1

Generator aa, with minimal polynomial x3x26x+7 x^{3} - x^{2} - 6 x + 7 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([7, -6, -1, 1]))
 
gp: K = nfinit(Polrev([7, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7, -6, -1, 1]);
 

Weierstrass equation

y2+(a2+a3)xy+(a2+a3)y=x3+(a24)x2+(6a24a+29)x+18a26a128{y}^2+\left(a^{2}+a-3\right){x}{y}+\left(a^{2}+a-3\right){y}={x}^{3}+\left(a^{2}-4\right){x}^{2}+\left(-6a^{2}-4a+29\right){x}+18a^{2}-6a-128
sage: E = EllipticCurve([K([-3,1,1]),K([-4,0,1]),K([-3,1,1]),K([29,-4,-6]),K([-128,-6,18])])
 
gp: E = ellinit([Polrev([-3,1,1]),Polrev([-4,0,1]),Polrev([-3,1,1]),Polrev([29,-4,-6]),Polrev([-128,-6,18])], K);
 
magma: E := EllipticCurve([K![-3,1,1],K![-4,0,1],K![-3,1,1],K![29,-4,-6],K![-128,-6,18]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2a254a+9:54a2+158a278:1)\left(-2 a^{2} - \frac{5}{4} a + 9 : \frac{5}{4} a^{2} + \frac{15}{8} a - \frac{27}{8} : 1\right)0022

Invariants

Conductor: N\frak{N} = (2a2a+7)(-2a^2-a+7) = (a)(a2+a5)(-a)\cdot(a^2+a-5)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 49 49 = 777\cdot7
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 22a23a7022a^2-3a-70
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (22a23a70)(22a^2-3a-70) = (a)4(a2+a5)2(-a)^{4}\cdot(a^2+a-5)^{2}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 117649 -117649 = 7472-7^{4}\cdot7^{2}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 3860023471102401a2+4960191239412401a11823681081782401 \frac{386002347110}{2401} a^{2} + \frac{496019123941}{2401} a - \frac{1182368108178}{2401}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 00
Regulator: Reg(E/K)\mathrm{Reg}(E/K) = 1 1
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) = 1 1
Global period: Ω(E/K)\Omega(E/K) 32.407923948165358780876303276271972295 32.407923948165358780876303276271972295
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 4 4  =  222\cdot2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 1.7056802077981767779408580671722090682 1.7056802077981767779408580671722090682
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

1.705680208L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/2132.407924142219.0000001.705680208\displaystyle 1.705680208 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 32.407924 \cdot 1 \cdot 4 } { {2^2 \cdot 19.000000} } \approx 1.705680208

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There are 2 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(a)(-a) 77 22 I4I_{4} Non-split multiplicative 11 11 44 44
(a2+a5)(a^2+a-5) 77 22 I2I_{2} Split multiplicative 1-1 11 22 22

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 49.2-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.