Generator a, with minimal polynomial
x3−x2−6x+7; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([7, -6, -1, 1]))
gp:K = nfinit(Polrev([7, -6, -1, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7, -6, -1, 1]);
y2+axy+(a2+a−3)y=x3+(a2−a−4)x2+(−4a+4)x−a2−3a+7
sage:E = EllipticCurve([K([0,1,0]),K([-4,-1,1]),K([-3,1,1]),K([4,-4,0]),K([7,-3,-1])])
gp:E = ellinit([Polrev([0,1,0]),Polrev([-4,-1,1]),Polrev([-3,1,1]),Polrev([4,-4,0]),Polrev([7,-3,-1])], K);
magma:E := EllipticCurve([K![0,1,0],K![-4,-1,1],K![-3,1,1],K![4,-4,0],K![7,-3,-1]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z⊕Z/4Z
P | h^(P) | Order |
(1214a2+12117a−12186:−13311266a2−1331117a+13314229:1) | 1.5670980788414340118090143703354116309 | ∞ |
(0:−a:1) | 0 | 4 |
Conductor: |
N |
= |
(−2a2−a+7) |
= |
(−a)⋅(a2+a−5) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
49 |
= |
7⋅7 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
−2a2−a+7 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(−2a2−a+7) |
= |
(−a)⋅(a2+a−5) |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
49 |
= |
7⋅7 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
−74733a2−42a+724063 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
1
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
1 |
Regulator:
|
Reg(E/K) |
≈ |
1.5670980788414340118090143703354116309
|
Néron-Tate Regulator:
|
RegNT(E/K) |
≈ |
4.7012942365243020354270431110062348927
|
Global period: |
Ω(E/K) | ≈ |
129.84057265560590393929750920154488319 |
Tamagawa product: |
∏pcp | = |
1
= 1⋅1
|
Torsion order: |
#E(K)tor | = |
4 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 2.0079563680684701506636056762284511218 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
2.007956368≈L′(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈42⋅19.0000001⋅129.840573⋅4.701294⋅1≈2.007956368
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is semistable.
There
are 2 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
2 and 4.
Its isogeny class
49.2-b
consists of curves linked by isogenies of
degrees dividing 4.
This elliptic curve is not a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.