Properties

Label 3.3.361.1-49.2-b4
Base field 3.3.361.1
Conductor norm 49 49
CM no
Base change no
Q-curve no
Torsion order 4 4
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field 3.3.361.1

Generator aa, with minimal polynomial x3x26x+7 x^{3} - x^{2} - 6 x + 7 ; class number 11.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([7, -6, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([7, -6, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7, -6, -1, 1]);
 

Weierstrass equation

y2+axy+(a2+a3)y=x3+(a2a4)x2+(4a+4)xa23a+7{y}^2+a{x}{y}+\left(a^{2}+a-3\right){y}={x}^{3}+\left(a^{2}-a-4\right){x}^{2}+\left(-4a+4\right){x}-a^{2}-3a+7
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,1,0]),K([-4,-1,1]),K([-3,1,1]),K([4,-4,0]),K([7,-3,-1])])
 
Copy content gp:E = ellinit([Polrev([0,1,0]),Polrev([-4,-1,1]),Polrev([-3,1,1]),Polrev([4,-4,0]),Polrev([7,-3,-1])], K);
 
Copy content magma:E := EllipticCurve([K![0,1,0],K![-4,-1,1],K![-3,1,1],K![4,-4,0],K![7,-3,-1]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/4Z\Z \oplus \Z/{4}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(4121a2+17121a86121:12661331a21171331a+42291331:1)\left(\frac{4}{121} a^{2} + \frac{17}{121} a - \frac{86}{121} : -\frac{1266}{1331} a^{2} - \frac{117}{1331} a + \frac{4229}{1331} : 1\right)1.56709807884143401180901437033541163091.5670980788414340118090143703354116309\infty
(0:a:1)\left(0 : -a : 1\right)0044

Invariants

Conductor: N\frak{N} = (2a2a+7)(-2a^2-a+7) = (a)(a2+a5)(-a)\cdot(a^2+a-5)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 49 49 = 777\cdot7
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 2a2a+7-2a^2-a+7
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (2a2a+7)(-2a^2-a+7) = (a)(a2+a5)(-a)\cdot(a^2+a-5)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 49 49 = 777\cdot7
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: jj = 47337a242a+240637 -\frac{4733}{7} a^{2} - 42 a + \frac{24063}{7}
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 1.5670980788414340118090143703354116309 1.5670980788414340118090143703354116309
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 4.7012942365243020354270431110062348927 4.7012942365243020354270431110062348927
Global period: Ω(E/K)\Omega(E/K) 129.84057265560590393929750920154488319 129.84057265560590393929750920154488319
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 1 1  =  111\cdot1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 44
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 2.0079563680684701506636056762284511218 2.0079563680684701506636056762284511218
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

2.007956368L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/21129.8405734.70129414219.0000002.007956368\begin{aligned}2.007956368 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 129.840573 \cdot 4.701294 \cdot 1 } { {4^2 \cdot 19.000000} } \\ & \approx 2.007956368 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There are 2 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(a)(-a) 77 11 I1I_{1} Non-split multiplicative 11 11 11 11
(a2+a5)(a^2+a-5) 77 11 I1I_{1} Non-split multiplicative 11 11 11 11

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 49.2-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.