Base field \(\Q(\sqrt{2}, \sqrt{5})\)
Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} + 4 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([4, 0, -6, 0, 1]))
gp: K = nfinit(Polrev([4, 0, -6, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 0, -6, 0, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,-2,0,1/2]),K([-1,-2,1/2,1/2]),K([-1,-1,1/2,1/2]),K([-14,8,-10,-7]),K([-4,48,-62,-73/2])])
gp: E = ellinit([Polrev([1,-2,0,1/2]),Polrev([-1,-2,1/2,1/2]),Polrev([-1,-1,1/2,1/2]),Polrev([-14,8,-10,-7]),Polrev([-4,48,-62,-73/2])], K);
magma: E := EllipticCurve([K![1,-2,0,1/2],K![-1,-2,1/2,1/2],K![-1,-1,1/2,1/2],K![-14,8,-10,-7],K![-4,48,-62,-73/2]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((1/2a^2+a-3)\) | = | \((1/2a^2+a-3)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 31 \) | = | \(31\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((3446a^3+328a^2+669a-25209)\) | = | \((1/2a^2+a-3)^{12}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( -787662783788549761 \) | = | \(-31^{12}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{18294256594913191872513}{787662783788549761} a^{3} - \frac{29872156558690483602305}{1575325567577099522} a^{2} - \frac{95382125225553480591493}{787662783788549761} a + \frac{80704205874773584791012}{787662783788549761} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(0\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(-\frac{7}{4} a^{3} - \frac{3}{2} a^{2} + 7 a + \frac{9}{4} : \frac{13}{16} a^{3} + \frac{1}{2} a^{2} - \frac{9}{4} a + \frac{23}{8} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 21.328917542675473882006677158657403896 \) | ||
Tamagawa product: | \( 2 \) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 1.06644587713377 \) | ||
Analytic order of Ш: | \( 4 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((1/2a^2+a-3)\) | \(31\) | \(2\) | \(I_{12}\) | Non-split multiplicative | \(1\) | \(1\) | \(12\) | \(12\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
\(3\) | 3B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3, 4, 6 and 12.
Its isogeny class
31.2-a
consists of curves linked by isogenies of
degrees dividing 12.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.