Learn more

Refine search


Results (6 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1800.2-a2 1800.2-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.111452642$ $3.481586885$ 1.552128233 \( \frac{470596}{225} \) \( \bigl[i + 1\) , \( -i\) , \( 0\) , \( 4\) , \( -2 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+4{x}-2i$
16200.2-d2 16200.2-d \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.748768142$ $1.160528961$ 3.475868462 \( \frac{470596}{225} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 36\) , \( -18 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+36\right){x}-18i$
18000.2-g2 18000.2-g \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.561055090$ $1.557012989$ 3.494280255 \( \frac{470596}{225} \) \( \bigl[i + 1\) , \( 1\) , \( 0\) , \( -16 i - 12\) , \( -22 i - 4\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-16i-12\right){x}-22i-4$
18000.3-f2 18000.3-f \(\Q(\sqrt{-1}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.561055090$ $1.557012989$ 3.494280255 \( \frac{470596}{225} \) \( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 16 i - 12\) , \( 22 i - 4\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(16i-12\right){x}+22i-4$
45000.3-o2 45000.3-o \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.696317377$ 2.785269508 \( \frac{470596}{225} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i + 102\) , \( 148 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i+102\right){x}+148i$
57600.2-bb2 57600.2-bb \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.740793442$ 3.481586885 \( \frac{470596}{225} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 16\) , \( 16 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+16{x}+16i$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.