Properties

Label 1002d
Number of curves 22
Conductor 10021002
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 1002d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1002.d2 1002d1 [1,0,1,5,16][1, 0, 1, -5, -16] 10218313/96192-10218313/96192 96192-96192 [2][2] 144144 0.36143-0.36143 Γ0(N)\Gamma_0(N)-optimal
1002.d1 1002d2 [1,0,1,125,544][1, 0, 1, -125, -544] 213525509833/669336213525509833/669336 669336669336 [2][2] 288288 0.014852-0.014852  

Rank

sage: E.rank()
 

The elliptic curves in class 1002d have rank 11.

Complex multiplication

The elliptic curves in class 1002d do not have complex multiplication.

Modular form 1002.2.a.d

sage: E.q_eigenform(10)
 
qq2+q3+q4+2q5q64q7q8+q92q104q11+q12+4q14+2q15+q164q17q184q19+O(q20)q - q^{2} + q^{3} + q^{4} + 2 q^{5} - q^{6} - 4 q^{7} - q^{8} + q^{9} - 2 q^{10} - 4 q^{11} + q^{12} + 4 q^{14} + 2 q^{15} + q^{16} - 4 q^{17} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.