Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 1002d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1002.d2 | 1002d1 | \([1, 0, 1, -5, -16]\) | \(-10218313/96192\) | \(-96192\) | \([2]\) | \(144\) | \(-0.36143\) | \(\Gamma_0(N)\)-optimal |
1002.d1 | 1002d2 | \([1, 0, 1, -125, -544]\) | \(213525509833/669336\) | \(669336\) | \([2]\) | \(288\) | \(-0.014852\) |
Rank
sage: E.rank()
The elliptic curves in class 1002d have rank \(1\).
Complex multiplication
The elliptic curves in class 1002d do not have complex multiplication.Modular form 1002.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.