Properties

Label 10051b3
Conductor 1005110051
Discriminant 2812681891-2812681891
j-invariant 5035787105075219 -\frac{50357871050752}{19}
CM no
Rank 22
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3+x2406977x+99796080y^2+y=x^3+x^2-406977x+99796080 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3+x2z406977xz2+99796080z3y^2z+yz^2=x^3+x^2z-406977xz^2+99796080z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3527442624x+4662415229904y^2=x^3-527442624x+4662415229904 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 1, -406977, 99796080])
 
gp: E = ellinit([0, 1, 1, -406977, 99796080])
 
magma: E := EllipticCurve([0, 1, 1, -406977, 99796080]);
 
oscar: E = elliptic_curve([0, 1, 1, -406977, 99796080])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ\Z \oplus \Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(360,264)(360, 264)0.335208336160067970551433101570.33520833616006797055143310157\infty
(13213/36,6769/216)(13213/36, 6769/216)2.89322493838417837054384801522.8932249383841783705438480152\infty

Integral points

(224,4463) \left(224, 4463\right) , (224,4464) \left(224, -4464\right) , (360,264) \left(360, 264\right) , (360,265) \left(360, -265\right) , (368,0) \left(368, 0\right) , (368,1) \left(368, -1\right) , (1050,28830) \left(1050, 28830\right) , (1050,28831) \left(1050, -28831\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  10051 10051  = 1923219 \cdot 23^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  2812681891-2812681891 = 119236-1 \cdot 19 \cdot 23^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  5035787105075219 -\frac{50357871050752}{19}  = 12181915773-1 \cdot 2^{18} \cdot 19^{-1} \cdot 577^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.60118626495589264892347129951.6011862649558926489234712995
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.0334391569913178035200948835960.033439156991317803520094883596
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.1049470994824951.104947099482495
Szpiro ratio: σm\sigma_{m} ≈ 5.4650901254540835.465090125454083

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.944429848833442413951056043380.94442984883344241395105604338
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.860558251818331667997026501400.86055825181833166799702650140
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 122 1\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 3.25094759870863379024395724903.2509475987086337902439572490
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.250947599L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.8605580.9444304123.250947599\displaystyle 3.250947599 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.860558 \cdot 0.944430 \cdot 4}{1^2} \approx 3.250947599

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   10051.2.a.c

q2q32q43q5+q7+q93q11+4q124q13+6q15+4q16+3q17q19+O(q20) q - 2 q^{3} - 2 q^{4} - 3 q^{5} + q^{7} + q^{9} - 3 q^{11} + 4 q^{12} - 4 q^{13} + 6 q^{15} + 4 q^{16} + 3 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 38016
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
1919 11 I1I_{1} nonsplit multiplicative 1 1 1 1
2323 44 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B 27.36.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[70, 5175, 7567, 14836], [13249, 16491, 17043, 5222], [31, 36, 17776, 16837], [3077, 0, 0, 23597], [1, 54, 0, 1], [23545, 54, 23544, 55], [1, 0, 54, 1], [28, 27, 729, 703]]
 
GL(2,Integers(23598)).subgroup(gens)
 
Gens := [[70, 5175, 7567, 14836], [13249, 16491, 17043, 5222], [31, 36, 17776, 16837], [3077, 0, 0, 23597], [1, 54, 0, 1], [23545, 54, 23544, 55], [1, 0, 54, 1], [28, 27, 729, 703]];
 
sub<GL(2,Integers(23598))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 23598=2331923 23598 = 2 \cdot 3^{3} \cdot 19 \cdot 23 , index 12961296, genus 4343, and generators

(705175756714836),(1324916491170435222),(31361777616837),(30770023597),(15401),(23545542354455),(10541),(2827729703)\left(\begin{array}{rr} 70 & 5175 \\ 7567 & 14836 \end{array}\right),\left(\begin{array}{rr} 13249 & 16491 \\ 17043 & 5222 \end{array}\right),\left(\begin{array}{rr} 31 & 36 \\ 17776 & 16837 \end{array}\right),\left(\begin{array}{rr} 3077 & 0 \\ 0 & 23597 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 23545 & 54 \\ 23544 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[23598])K:=\Q(E[23598]) is a degree-4795904982528047959049825280 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/23598Z)\GL_2(\Z/23598\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
1919 nonsplit multiplicative 2020 529=232 529 = 23^{2}
2323 additive 266266 19 19

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3 and 9.
Its isogeny class 10051b consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 19a2, its twist by 23-23.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(69)\Q(\sqrt{69}) Z/3Z\Z/3\Z not in database
33 3.1.76.1 Z/2Z\Z/2\Z not in database
66 6.0.109744.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.0.14270540463.1 Z/3Z\Z/3\Z not in database
66 6.6.31209671992581.1 Z/9Z\Z/9\Z not in database
66 6.2.1897467984.1 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
1212 12.0.7474187781589267170441.1 Z/9Z\Z/9\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.0.4297228167484676083994283208121413632.1 Z/6Z\Z/6\Z not in database
1818 18.6.44950524425770151928627097389761944698379063296.1 Z/18Z\Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss ord ord ord ord ord ord nonsplit add ord ord ord ord ord ord
λ\lambda-invariant(s) 4,7 2 2 2 2 2 2 4 - 2 2 2 2 2 2
μ\mu-invariant(s) 0,0 0 0 0 0 0 0 0 - 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.