Properties

Label 1008.b
Number of curves 44
Conductor 10081008
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 1008.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1008.b1 1008e4 [0,0,0,36291,2661010][0, 0, 0, -36291, 2661010] 7080974546692/1897080974546692/189 141087744141087744 [4][4] 15361536 1.07751.0775  
1008.b2 1008e3 [0,0,0,3531,9686][0, 0, 0, -3531, -9686] 6522128932/37200876522128932/3720087 27770300651522777030065152 [2][2] 15361536 1.07751.0775  
1008.b3 1008e2 [0,0,0,2271,41470][0, 0, 0, -2271, 41470] 6940769488/357216940769488/35721 66663959046666395904 [2,2][2, 2] 768768 0.730920.73092  
1008.b4 1008e1 [0,0,0,66,1339][0, 0, 0, -66, 1339] 2725888/64827-2725888/64827 756142128-756142128 [2][2] 384384 0.384350.38435 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1008.b have rank 00.

Complex multiplication

The elliptic curves in class 1008.b do not have complex multiplication.

Modular form 1008.2.a.b

sage: E.q_eigenform(10)
 
q2q5q7+6q13+2q174q19+O(q20)q - 2 q^{5} - q^{7} + 6 q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.