E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 1008.b
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
1008.b1 |
1008e4 |
[0,0,0,−36291,2661010] |
7080974546692/189 |
141087744 |
[4] |
1536 |
1.0775
|
|
1008.b2 |
1008e3 |
[0,0,0,−3531,−9686] |
6522128932/3720087 |
2777030065152 |
[2] |
1536 |
1.0775
|
|
1008.b3 |
1008e2 |
[0,0,0,−2271,41470] |
6940769488/35721 |
6666395904 |
[2,2] |
768 |
0.73092
|
|
1008.b4 |
1008e1 |
[0,0,0,−66,1339] |
−2725888/64827 |
−756142128 |
[2] |
384 |
0.38435
|
Γ0(N)-optimal |
The elliptic curves in class 1008.b have
rank 0.
The elliptic curves in class 1008.b do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.