Properties

Label 100800lv2
Conductor 100800100800
Discriminant 1.536×10231.536\times 10^{23}
j-invariant 13548786915888151438240000 \frac{135487869158881}{51438240000}
CM no
Rank 11
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x315408300x+13653218000y^2=x^3-15408300x+13653218000 Copy content Toggle raw display (homogenize, simplify)
y2z=x315408300xz2+13653218000z3y^2z=x^3-15408300xz^2+13653218000z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x315408300x+13653218000y^2=x^3-15408300x+13653218000 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -15408300, 13653218000])
 
gp: E = ellinit([0, 0, 0, -15408300, 13653218000])
 
magma: E := EllipticCurve([0, 0, 0, -15408300, 13653218000]);
 
oscar: E = elliptic_curve([0, 0, 0, -15408300, 13653218000])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2060080/529,1371566700/12167)(2060080/529, 1371566700/12167)10.39042091823090499570228178410.390420918230904995702281784\infty
(940,0)(940, 0)0022
(3370,0)(3370, 0)0022

Integral points

(4310,0) \left(-4310, 0\right) , (940,0) \left(940, 0\right) , (3370,0) \left(3370, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  100800 100800  = 26325272^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  153593761628160000000000153593761628160000000000 = 226314510722^{26} \cdot 3^{14} \cdot 5^{10} \cdot 7^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  13548786915888151438240000 \frac{135487869158881}{51438240000}  = 283854725136132^{-8} \cdot 3^{-8} \cdot 5^{-4} \cdot 7^{-2} \cdot 51361^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 3.14845451744666807995104053253.1484545174466680799510405325
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.754708646055645082827190065240.75470864605564508282719006524
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.01909868855799051.0190986885579905
Szpiro ratio: σm\sigma_{m} ≈ 5.3177171515874355.317717151587435

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 10.39042091823090499570228178410.390420918230904995702281784
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0936544420128119950312586408120.093654442012811995031258640812
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 128 128  = 2222222 2^{2}\cdot2^{2}\cdot2^{2}\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 7.78487258700132044563655838077.7848725870013204456365583807
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

7.784872587L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.09365410.390421128427.784872587\displaystyle 7.784872587 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.093654 \cdot 10.390421 \cdot 128}{4^2} \approx 7.784872587

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 100800.2.a.gt

qq7+4q112q13+2q17+4q19+O(q20) q - q^{7} + 4 q^{11} - 2 q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 9437184
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I16I_{16}^{*} additive -1 6 26 8
33 44 I8I_{8}^{*} additive -1 2 14 8
55 44 I4I_{4}^{*} additive 1 2 10 4
77 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 16.96.0.43

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[327, 1664, 604, 1559], [1, 16, 0, 1], [1665, 1664, 1606, 1391], [559, 1672, 0, 1679], [241, 16, 1446, 97], [1, 0, 16, 1], [1667, 1672, 1360, 1063], [1, 16, 4, 65], [1665, 16, 1664, 17]]
 
GL(2,Integers(1680)).subgroup(gens)
 
Gens := [[327, 1664, 604, 1559], [1, 16, 0, 1], [1665, 1664, 1606, 1391], [559, 1672, 0, 1679], [241, 16, 1446, 97], [1, 0, 16, 1], [1667, 1672, 1360, 1063], [1, 16, 4, 65], [1665, 16, 1664, 17]];
 
sub<GL(2,Integers(1680))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1680=24357 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 , index 768768, genus 1313, and generators

(32716646041559),(11601),(1665166416061391),(559167201679),(24116144697),(10161),(1667167213601063),(116465),(166516166417)\left(\begin{array}{rr} 327 & 1664 \\ 604 & 1559 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1665 & 1664 \\ 1606 & 1391 \end{array}\right),\left(\begin{array}{rr} 559 & 1672 \\ 0 & 1679 \end{array}\right),\left(\begin{array}{rr} 241 & 16 \\ 1446 & 97 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 1667 & 1672 \\ 1360 & 1063 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right),\left(\begin{array}{rr} 1665 & 16 \\ 1664 & 17 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1680])K:=\Q(E[1680]) is a degree-14863564801486356480 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1680Z)\GL_2(\Z/1680\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 225=3252 225 = 3^{2} \cdot 5^{2}
33 additive 88 11200=26527 11200 = 2^{6} \cdot 5^{2} \cdot 7
55 additive 1818 4032=26327 4032 = 2^{6} \cdot 3^{2} \cdot 7
77 nonsplit multiplicative 88 14400=263252 14400 = 2^{6} \cdot 3^{2} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4 and 8.
Its isogeny class 100800lv consists of 8 curves linked by isogenies of degrees dividing 16.

Twists

The minimal quadratic twist of this elliptic curve is 210e2, its twist by 120120.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(30)\Q(\sqrt{30}) Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
44 Q(7,30)\Q(\sqrt{7}, \sqrt{-30}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(7,30)\Q(\sqrt{-7}, \sqrt{-30}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.7965941760000.65 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
88 8.8.497871360000.2 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
88 8.0.3317760000.1 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
88 deg 8 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/24Z\Z/2\Z \oplus \Z/24\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add add nonsplit ord ord ord ord ord ord ss ord ord ord ss
λ\lambda-invariant(s) - - - 3 1 1 1 1 1 1 1,1 1 1 1 1,1
μ\mu-invariant(s) - - - 0 0 0 0 0 0 0 0,0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.