Properties

Label 100800mb
Number of curves 44
Conductor 100800100800
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("mb1")
 
E.isogeny_class()
 

Elliptic curves in class 100800mb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
100800.gj3 100800mb1 [0,0,0,64200,6001000][0, 0, 0, -64200, -6001000] 2508888064/1181252508888064/118125 13778100000000001377810000000000 [2][2] 589824589824 1.66571.6657 Γ0(N)\Gamma_0(N)-optimal
100800.gj2 100800mb2 [0,0,0,176700,20774000][0, 0, 0, -176700, 20774000] 3269383504/8930253269383504/893025 166659897600000000166659897600000000 [2,2][2, 2] 11796481179648 2.01232.0123  
100800.gj4 100800mb3 [0,0,0,453300,135434000][0, 0, 0, 453300, 135434000] 13799183324/1860043513799183324/18600435 13885150325760000000-13885150325760000000 [2][2] 23592962359296 2.35892.3589  
100800.gj1 100800mb4 [0,0,0,2606700,1619714000][0, 0, 0, -2606700, 1619714000] 2624033547076/3241352624033547076/324135 241965480960000000241965480960000000 [2][2] 23592962359296 2.35892.3589  

Rank

sage: E.rank()
 

The elliptic curves in class 100800mb have rank 11.

Complex multiplication

The elliptic curves in class 100800mb do not have complex multiplication.

Modular form 100800.2.a.mb

sage: E.q_eigenform(10)
 
qq7+4q116q132q178q19+O(q20)q - q^{7} + 4 q^{11} - 6 q^{13} - 2 q^{17} - 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.