Properties

Label 100800mb
Number of curves $4$
Conductor $100800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("mb1")
 
E.isogeny_class()
 

Elliptic curves in class 100800mb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
100800.gj3 100800mb1 \([0, 0, 0, -64200, -6001000]\) \(2508888064/118125\) \(1377810000000000\) \([2]\) \(589824\) \(1.6657\) \(\Gamma_0(N)\)-optimal
100800.gj2 100800mb2 \([0, 0, 0, -176700, 20774000]\) \(3269383504/893025\) \(166659897600000000\) \([2, 2]\) \(1179648\) \(2.0123\)  
100800.gj4 100800mb3 \([0, 0, 0, 453300, 135434000]\) \(13799183324/18600435\) \(-13885150325760000000\) \([2]\) \(2359296\) \(2.3589\)  
100800.gj1 100800mb4 \([0, 0, 0, -2606700, 1619714000]\) \(2624033547076/324135\) \(241965480960000000\) \([2]\) \(2359296\) \(2.3589\)  

Rank

sage: E.rank()
 

The elliptic curves in class 100800mb have rank \(1\).

Complex multiplication

The elliptic curves in class 100800mb do not have complex multiplication.

Modular form 100800.2.a.mb

sage: E.q_eigenform(10)
 
\(q - q^{7} + 4 q^{11} - 6 q^{13} - 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.