Properties

Label 100800os2
Conductor 100800100800
Discriminant 98018424000-98018424000
j-invariant 288755302416807 -\frac{2887553024}{16807}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x35340x+150950y^2=x^3-5340x+150950 Copy content Toggle raw display (homogenize, simplify)
y2z=x35340xz2+150950z3y^2z=x^3-5340xz^2+150950z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x35340x+150950y^2=x^3-5340x+150950 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -5340, 150950])
 
gp: E = ellinit([0, 0, 0, -5340, 150950])
 
magma: E := EllipticCurve([0, 0, 0, -5340, 150950]);
 
oscar: E = elliptic_curve([0, 0, 0, -5340, 150950])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  100800 100800  = 26325272^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  98018424000-98018424000 = 126365375-1 \cdot 2^{6} \cdot 3^{6} \cdot 5^{3} \cdot 7^{5}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  288755302416807 -\frac{2887553024}{16807}  = 121275893-1 \cdot 2^{12} \cdot 7^{-5} \cdot 89^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.950072528465543992338360487270.95007252846554399233836048727
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.34816668425700860171806802523-0.34816668425700860171806802523
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.98803115342998050.9880311534299805
Szpiro ratio: σm\sigma_{m} ≈ 3.24389362432584343.2438936243258434

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.07145602369170160535608954511.0714560236917016053560895451
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 1121 1\cdot1\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.14291204738340321071217909032.1429120473834032107121790903
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.142912047L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.0714561.0000002122.142912047\displaystyle 2.142912047 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.071456 \cdot 1.000000 \cdot 2}{1^2} \approx 2.142912047

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 100800.2.a.gf

qq7+3q11+q13+7q17+O(q20) q - q^{7} + 3 q^{11} + q^{13} + 7 q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 96000
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IIII additive -1 6 6 0
33 11 I0I_0^{*} additive -1 2 6 0
55 22 IIIIII additive -1 2 3 0
77 11 I5I_{5} nonsplit multiplicative 1 1 5 5

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
55 5B.4.1 5.12.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[559, 0, 0, 839], [6, 13, 785, 721], [286, 285, 345, 52], [779, 270, 780, 269], [1, 0, 10, 1], [831, 10, 830, 11], [286, 573, 15, 301], [419, 0, 0, 839], [46, 285, 615, 346], [209, 0, 0, 839], [1, 10, 0, 1]]
 
GL(2,Integers(840)).subgroup(gens)
 
Gens := [[559, 0, 0, 839], [6, 13, 785, 721], [286, 285, 345, 52], [779, 270, 780, 269], [1, 0, 10, 1], [831, 10, 830, 11], [286, 573, 15, 301], [419, 0, 0, 839], [46, 285, 615, 346], [209, 0, 0, 839], [1, 10, 0, 1]];
 
sub<GL(2,Integers(840))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 840=23357 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 , index 4848, genus 11, and generators

(55900839),(613785721),(28628534552),(779270780269),(10101),(8311083011),(28657315301),(41900839),(46285615346),(20900839),(11001)\left(\begin{array}{rr} 559 & 0 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 785 & 721 \end{array}\right),\left(\begin{array}{rr} 286 & 285 \\ 345 & 52 \end{array}\right),\left(\begin{array}{rr} 779 & 270 \\ 780 & 269 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 831 & 10 \\ 830 & 11 \end{array}\right),\left(\begin{array}{rr} 286 & 573 \\ 15 & 301 \end{array}\right),\left(\begin{array}{rr} 419 & 0 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 46 & 285 \\ 615 & 346 \end{array}\right),\left(\begin{array}{rr} 209 & 0 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[840])K:=\Q(E[840]) is a degree-14863564801486356480 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/840Z)\GL_2(\Z/840\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 315=3257 315 = 3^{2} \cdot 5 \cdot 7
33 additive 66 11200=26527 11200 = 2^{6} \cdot 5^{2} \cdot 7
55 additive 1010 576=2632 576 = 2^{6} \cdot 3^{2}
77 nonsplit multiplicative 88 14400=263252 14400 = 2^{6} \cdot 3^{2} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 5.
Its isogeny class 100800os consists of 2 curves linked by isogenies of degree 5.

Twists

The minimal quadratic twist of this elliptic curve is 175a2, its twist by 2424.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(6)\Q(\sqrt{6}) Z/5Z\Z/5\Z not in database
33 3.1.140.1 Z/2Z\Z/2\Z not in database
66 6.0.686000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.67737600.1 Z/10Z\Z/10\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/2ZZ/10Z\Z/2\Z \oplus \Z/10\Z not in database
1616 deg 16 Z/15Z\Z/15\Z not in database
2020 20.0.295245000000000000000000000000000000.2 Z/5Z\Z/5\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add add nonsplit ord ord ord ss ord ord ord ord ord ord ord
λ\lambda-invariant(s) - - - 0 0 2 0 0,0 0 0 0 0 0 0 0
μ\mu-invariant(s) - - - 0 0 0 0 0,0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.