Properties

Label 10080bn
Number of curves $4$
Conductor $10080$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bn1")
 
E.isogeny_class()
 

Elliptic curves in class 10080bn

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10080.c3 10080bn1 \([0, 0, 0, -47253, 3952748]\) \(250094631024064/62015625\) \(2893401000000\) \([2, 2]\) \(24576\) \(1.3787\) \(\Gamma_0(N)\)-optimal
10080.c2 10080bn2 \([0, 0, 0, -52923, 2944622]\) \(43919722445768/15380859375\) \(5740875000000000\) \([2]\) \(49152\) \(1.7253\)  
10080.c1 10080bn3 \([0, 0, 0, -756003, 253007498]\) \(128025588102048008/7875\) \(2939328000\) \([2]\) \(49152\) \(1.7253\)  
10080.c4 10080bn4 \([0, 0, 0, -41628, 4929248]\) \(-2671731885376/1969120125\) \(-5879761187328000\) \([2]\) \(49152\) \(1.7253\)  

Rank

sage: E.rank()
 

The elliptic curves in class 10080bn have rank \(1\).

Complex multiplication

The elliptic curves in class 10080bn do not have complex multiplication.

Modular form 10080.2.a.bn

sage: E.q_eigenform(10)
 
\(q - q^{5} - q^{7} - 4 q^{11} - 2 q^{13} + 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.