Properties

Label 101150c
Number of curves $4$
Conductor $101150$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 101150c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
101150.o4 101150c1 \([1, -1, 0, 16708, -1328384]\) \(1367631/2800\) \(-1056018643750000\) \([2]\) \(491520\) \(1.5672\) \(\Gamma_0(N)\)-optimal
101150.o3 101150c2 \([1, -1, 0, -127792, -14188884]\) \(611960049/122500\) \(46200815664062500\) \([2, 2]\) \(983040\) \(1.9137\)  
101150.o2 101150c3 \([1, -1, 0, -633542, 181536366]\) \(74565301329/5468750\) \(2062536413574218750\) \([2]\) \(1966080\) \(2.2603\)  
101150.o1 101150c4 \([1, -1, 0, -1934042, -1034720134]\) \(2121328796049/120050\) \(45276799350781250\) \([2]\) \(1966080\) \(2.2603\)  

Rank

sage: E.rank()
 

The elliptic curves in class 101150c have rank \(1\).

Complex multiplication

The elliptic curves in class 101150c do not have complex multiplication.

Modular form 101150.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{7} - q^{8} - 3 q^{9} - 4 q^{11} + 6 q^{13} + q^{14} + q^{16} + 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.