Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 101150c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
101150.o4 | 101150c1 | \([1, -1, 0, 16708, -1328384]\) | \(1367631/2800\) | \(-1056018643750000\) | \([2]\) | \(491520\) | \(1.5672\) | \(\Gamma_0(N)\)-optimal |
101150.o3 | 101150c2 | \([1, -1, 0, -127792, -14188884]\) | \(611960049/122500\) | \(46200815664062500\) | \([2, 2]\) | \(983040\) | \(1.9137\) | |
101150.o2 | 101150c3 | \([1, -1, 0, -633542, 181536366]\) | \(74565301329/5468750\) | \(2062536413574218750\) | \([2]\) | \(1966080\) | \(2.2603\) | |
101150.o1 | 101150c4 | \([1, -1, 0, -1934042, -1034720134]\) | \(2121328796049/120050\) | \(45276799350781250\) | \([2]\) | \(1966080\) | \(2.2603\) |
Rank
sage: E.rank()
The elliptic curves in class 101150c have rank \(1\).
Complex multiplication
The elliptic curves in class 101150c do not have complex multiplication.Modular form 101150.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.