Properties

Label 101400e
Number of curves $1$
Conductor $101400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 101400e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
101400.s1 101400e1 \([0, -1, 0, 41061367, 66631046637]\) \(396555344454656/328867205355\) \(-6349516746449448780000000\) \([]\) \(21288960\) \(3.4469\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 101400e1 has rank \(1\).

Complex multiplication

The elliptic curves in class 101400e do not have complex multiplication.

Modular form 101400.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{7} + q^{9} + 5 q^{11} - 3 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display