Properties

Label 101400g
Number of curves $2$
Conductor $101400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("g1")
 
E.isogeny_class()
 

Elliptic curves in class 101400g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
101400.m2 101400g1 \([0, -1, 0, -1408, 13202812]\) \(-4/975\) \(-75298220400000000\) \([2]\) \(774144\) \(1.9172\) \(\Gamma_0(N)\)-optimal
101400.m1 101400g2 \([0, -1, 0, -846408, 295432812]\) \(434163602/7605\) \(1174652238240000000\) \([2]\) \(1548288\) \(2.2638\)  

Rank

sage: E.rank()
 

The elliptic curves in class 101400g have rank \(1\).

Complex multiplication

The elliptic curves in class 101400g do not have complex multiplication.

Modular form 101400.2.a.g

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{7} + q^{9} + 4 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.