Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 102.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
102.a1 | 102a1 | \([1, 1, 0, -2, 0]\) | \(1771561/612\) | \(612\) | \([2]\) | \(8\) | \(-0.76353\) | \(\Gamma_0(N)\)-optimal |
102.a2 | 102a2 | \([1, 1, 0, 8, 10]\) | \(46268279/46818\) | \(-46818\) | \([2]\) | \(16\) | \(-0.41695\) |
Rank
sage: E.rank()
The elliptic curves in class 102.a have rank \(1\).
Complex multiplication
The elliptic curves in class 102.a do not have complex multiplication.Modular form 102.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.