Properties

Label 103428.u
Number of curves 11
Conductor 103428103428
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Elliptic curves in class 103428.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
103428.u1 103428h1 [0,0,0,8112,430612][0, 0, 0, -8112, 430612] 65536/51-65536/51 45940718543616-45940718543616 [][] 196992196992 1.32021.3202 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 103428.u1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
131311
17171+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 1T+5T2 1 - T + 5 T^{2} 1.5.ab
77 1+7T2 1 + 7 T^{2} 1.7.a
1111 15T+11T2 1 - 5 T + 11 T^{2} 1.11.af
1919 1+T+19T2 1 + T + 19 T^{2} 1.19.b
2323 13T+23T2 1 - 3 T + 23 T^{2} 1.23.ad
2929 1+2T+29T2 1 + 2 T + 29 T^{2} 1.29.c
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 103428.u do not have complex multiplication.

Modular form 103428.2.a.u

Copy content sage:E.q_eigenform(10)
 
q+q5+5q11q17q19+O(q20)q + q^{5} + 5 q^{11} - q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display