Properties

Label 103428.w
Number of curves $2$
Conductor $103428$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("w1")
 
E.isogeny_class()
 

Elliptic curves in class 103428.w

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
103428.w1 103428bb1 \([0, 0, 0, -421824, -66461447]\) \(67108864/23409\) \(2895479825994304848\) \([2]\) \(1437696\) \(2.2440\) \(\Gamma_0(N)\)-optimal
103428.w2 103428bb2 \([0, 0, 0, 1258881, -464116250]\) \(111485936/111537\) \(-220737756146389357824\) \([2]\) \(2875392\) \(2.5905\)  

Rank

sage: E.rank()
 

The elliptic curves in class 103428.w have rank \(0\).

Complex multiplication

The elliptic curves in class 103428.w do not have complex multiplication.

Modular form 103428.2.a.w

sage: E.q_eigenform(10)
 
\(q + 2 q^{5} - 2 q^{7} - 2 q^{11} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.