Properties

Label 103428.w
Number of curves 22
Conductor 103428103428
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("w1")
 
E.isogeny_class()
 

Elliptic curves in class 103428.w

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
103428.w1 103428bb1 [0,0,0,421824,66461447][0, 0, 0, -421824, -66461447] 67108864/2340967108864/23409 28954798259943048482895479825994304848 [2][2] 14376961437696 2.24402.2440 Γ0(N)\Gamma_0(N)-optimal
103428.w2 103428bb2 [0,0,0,1258881,464116250][0, 0, 0, 1258881, -464116250] 111485936/111537111485936/111537 220737756146389357824-220737756146389357824 [2][2] 28753922875392 2.59052.5905  

Rank

sage: E.rank()
 

The elliptic curves in class 103428.w have rank 00.

Complex multiplication

The elliptic curves in class 103428.w do not have complex multiplication.

Modular form 103428.2.a.w

sage: E.q_eigenform(10)
 
q+2q52q72q11q174q19+O(q20)q + 2 q^{5} - 2 q^{7} - 2 q^{11} - q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.